Cloud native EDA tools & pre-optimized hardware platforms
Synopsys is a leading provider of electronic design automation solutions and services.
Synopsys is a leading provider of high-quality, silicon-proven semiconductor IP solutions for SoC designs.
Synopsys helps you protect your bottom line by building trust in your software—at the speed your business demands.
Posted on August 28, 2018
A study published as a Letter in Nature [1], presents a new type of molecular junction that is more insulating than a vacuum region of the same dimensions as the active component. The effect is obtained by designing molecules with Quantum destructive interference, such that the molecules at relevant energies strongly suppresses electron conductance through the molecule. The transport calculations were performed using QuantumATK by Gemma Solomon’s group at the University of Copenhagen. Synthesis and experimental measurements of the conductance came from the groups of Shengxiong Xiao, Colin Nuckolls and Latha Venkataraman group at Shanghai Normal University and Columbia University. The molecules may find applications in thermo-electric devices or as insulators in electronic devices.
Figure 1. Schematic illustration of the attenuation of the wave function describing an electron tunnelling through a single-molecule junction. (a) Through a low-conducting molecule, here an alkane. (b) Through an empty junction, i.e., a vacuum-gap between the electrodes. (c) Through a molecule with non-exponential attenuation of the tunnelling probability due to destructive quantum interference.
Relevant resources
All the computational methods used in the letter are available in QuantumATK and are described in the tutorials:
References
[1] M. H. Garner, H. Li, Y. Chen, T. A. Su, Z. Shangguan, D. W. Paley, T. Liu, F. Ng, H. Li, S. Xiao, C. Nuckolls, L. Venkataraman, and G. C. Solomon, "Comprehensive suppression of single-molecule conductance using destructive σ-interference", Nature 558, 415 (2018).
Interested in applying QuantumATK software to your research? Test our software or contact us at quantumatk@synopsys.com to get more information on QuantumATK platform for atomic-scale modeling.