Synopsys Security IP
Enabling the Highest Levels of SoC Security
Secure Your SoC from the Start

Whether you are developing system-on-chips (SoCs) for mobile and wearables, automotive, artificial intelligence (AI), or entertainment, securing your proprietary data and your customers' information is critical to your company's long-term success. Hackers can exploit vulnerabilities in any part of those systems, at the network, device, or chip levels. Protecting your systems starts with having base security functionality hardened into the SoC to enable the setup of a secure communication environment.

Synopsys' industry recognized security experts are committed to helping you protect your SoC. We provide a broad portfolio of highly integrated security IP solutions that support your system requirements to help you accelerate your secure chip's tape out and time-to-market, even if you don't have in-house security experts. Our IP and software solutions help prevent a wide range of evolving threats in connected devices—threats including theft, tampering, side channels attacks, malware and data breaches.

The reality is, security breaches can affect any connected device and its data. Protect yours with Synopsys Security IP.

<table>
<thead>
<tr>
<th>Automotive</th>
<th>AI</th>
<th>Cloud</th>
<th>Industrial</th>
<th>Aerospace & Government</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Protect car subsystems and data against tampering</td>
<td>- Secure algorithm protection</td>
<td>- Protect confidential data during transfer</td>
<td>- Remote updates and control</td>
<td>- Mission-critical applications</td>
<td>- Secure key management</td>
</tr>
<tr>
<td>- No safety without security</td>
<td>- Avoid rogue data injection</td>
<td>- Highest level of security for I/O interconnects</td>
<td>- Monitor and manage production flow</td>
<td>- Stringent requirements for security compliance</td>
<td>- Side channel attack resistance</td>
</tr>
<tr>
<td>- High-performance, low-latency solution</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>- Secure in-field updates</td>
</tr>
</tbody>
</table>

“As security attacks increase and evolve, relying solely on internal development carries too much risk and affects time-to-market. We use Synopsys Security IP for our autonomous automotive SoC product lines due to Synopsys’ deep security expertise and proven, certified technology that supports the features we require.”

~VP of ASIC Design, Leading AI Chip Provider
Your SoC Deserves a Unique, Tamper-Proof Identity

Creating trust in devices begins early in the design process and figures in aspects of manufacturing, service and maintenance throughout the devices’ life cycle. Many devices store and process valuable information such as service subscriptions, health records, credit card and banking information, and similar data on behalf of their owners that must be protected. Deeply embedded security has never been more critical.

Embedding a hardware root of trust enables chip manufacturers and their OEM/ODM customers to build a trusted execution environment (TEE) to protect valuable data stored within trusted software and hardware resources. The TEE creates strong cryptographic device identity that is permanently bound to that unique device.

Manufacturers can use this trusted identity to provide secure maintenance or enable new features and services. The trust can then be extended to the network and other connected devices.

Synopsys offers several options for creating a TEE on an SoC. The Synopsys tRoot™ Hardware Secure Modules (HSMs) with Root of Trust protect sensitive information and data processing within the SoCs. The tRoot HSMs are available either as flexible, configurable HSMs, or as self-contained HSMs for a completely secure environment with a limited set of interactions with the host processor. Designers can also choose Synopsys ARC® SecureShield™ Technology to build a TEE on low-power ARC EM embedded processors.

Another component that Synopsys offers are Physical Unclonable Functions or PUFs. PUFs are best described as device-unique “silicon fingerprints”, which can be used to generate and protect the cryptographic keys of a device. Using PUFs, sensitive key material is never stored in non-volatile memory, but rather reconstructed on the fly and only when needed. When the device is powered off, no secret material is present in any form of memory; in effect, making the root key “invisible” to attackers. This is why storage of keys with PUFs is more secure than using any traditional form of memory.

Build Safe and Secure Automotive SoCs

The SGS-TÜV Certified ASIL B Compliant tRoot HSM for Automotive augments its comprehensive root of trust security solution with a suite of automotive documentation and hardware safety mechanisms to protect against both malicious attacks and random and systematic faults.

The tRoot HSM for Automotive safety mechanisms such as dual core lockstep, memory ECC, register EDC, parity, watchdog and self checking comparators, provide protection against permanent, transient and latent faults for the secure system that includes an ARC processor, scalable side-channel resistant cryptography, secure external memory controllers and true random number generator. The tRoot HSM for Automotive is developed with an ASIL D systematic development flow.
SoC Design is Critical for Device Security

As the amount of data being processed, stored, and connected at faster rates continues to increase, the security of SoC devices has become more important than ever. To ensure data confidentiality and integrity, the semiconductor industry has made security a top priority in SoC development. This can be achieved by implementing various techniques, including encryption/decryption, authentication, and physical protection. Synopsys offers a broad range of secure interface IP products that integrate security features in the controllers to protect HPC, IoT, mobile, and automotive SoCs against tampering and physical attacks.

Protect Data Transfer in SoCs Against Tampering and Physical Attacks

The Synopsys Integrity and Data Encryption (IDE) Security Modules help designers protect against data tampering and physical attacks in high-performance computing (HPC) SoCs using PCIe and CXL interfaces. The Synopsys IDE Security Modules protect sensitive data with efficient encryption, decryption, and authentication based on AES-GCM algorithms while meeting PCIe 5.0/6.0/6.1 and CXL 2.0/3.0/3.1 specifications, performance and latency requirements. The Synopsys IDE Security Modules are designed to the latest standards and are validated with Synopsys’ Controller IP to accelerate SoC integration.

High-Value Digital Content Protection

Designs supporting HDMI and DisplayPort (including USB Type-C connectivity) can ensure the highest content protection between links with Synopsys High-Definition Content Protection (HDCP) Embedded Security Modules. Our single and multi-port proven security solutions span silicon cores to embedded software to help content owners, service providers, network operators, embedded system OEMs and SoC suppliers protect high-value digital content for the home entertainment and digital media markets.

“With increased demand for data protection against malicious attacks, we needed to develop our storage SSD SoC with strong security based on proven, standards-compliant IP. Synopsys’ Security IP enabled us to implement the highest level of security for our SoC.”

~Sky Shen, CEO of Starblaze

Build a Strong Foundation with Secure Cryptography

The cornerstone of all security solutions that deal with confidentiality, integrity, and authentication is cryptography. Synopsys’ Cryptography IP including symmetric and hash cryptographic engines, Public Key Accelerators (PKAs), True Random Number Generators (TRNGs) and Physical Unclonable Function (PUF), are silicon-proven, standards-compliant solutions providing the essential building blocks of secure systems. The hardware and software security implementations are easily configured, cover a wide spectrum of size and performance combinations, and are available in different architectures, such as look-aside or flow-through. Each cryptographic core can be used as a building block for security protocol accelerators and embedded security modules.

Data Protection Now and in the Future

Synopsys’ PKA IP offering includes quantum-safe Agile PQC PKA IP supporting the latest NIST post-quantum cryptographic (PQC) algorithms. Synopsys PQC PKAs IP solutions enable designers to protect sensitive data and systems from attacks in the quantum computing era for government, enterprises, and consumers across a wide range of applications from the edge to the cloud.
Protect High-Speed Network Traffic

Synopsys Media Access Control Security (MACsec) Modules secure Ethernet traffic against denial-of-service (DoS) attacks, eavesdropping, and man-in-the-middle attacks by supporting confidentiality, integrity, origin authentication, and replay protection in switch, router, and bridge SoCs for HPC, 5G, Mobile, and Automotive applications. The standards-compliant full-duplex solutions integrate seamlessly with Synopsys Ethernet MAC & PCS IP, supporting scalable data rates with optimal latency, network prioritization, and diversity for a range of secure Ethernet connections.

Ensure Confidentiality of Data Over Memory Interfaces

Synopsys Inline Memory Encryption (IME) Security Module provides confidentiality of data in use or stored in off-chip memory over memory interfaces for HPC, IoT, Mobile, and Automotive applications. It integrates seamlessly with Synopsys DDR and LPDDR Controllers for most optimal solutions in the industry with latency as low as 2 cycles, accelerating SoC integration and reducing risk. The IME Security Module is scalable to match various memory interfaces bandwidths, supports both write and read channels based on the AES-XTS cryptographic algorithm and is FIPS 140-3 certification ready.

Why Choose Synopsys for Security IP?

1. Proven & trusted in 800+ designs and 1B+ units
2. Highly integrated
3. Recognized technology leadership
4. Demonstrated expertise with standards compliant security solutions
Accelerate Standard Security Protocols

Supporting major security protocols such as IPsec, TLS/DTLS, WiFi, MACsec, and LTE/LTE-Advanced bring complex cost and power requirements to your SoCs. Synopsys Security Protocol Accelerators (SPAcc) offer power- and area-efficient encryption and authentication capabilities for your design, providing increased performance, ease-of-use, and advanced security features such as quality-of-service, virtualization, and secure command processing. Specifically for automotive applications, the Synopsys Security Protocol Accelerator has been certified by SGS-TÜV for functional safety ISO-26262 ASIL B level compliance with ASIL D safety integrity for systematic faults and ASIL B for random hardware faults.

Software Security

In addition to security IP, Synopsys offers the most comprehensive solution for integrating security and quality into your software development life cycle and supply chain. The comprehensive array of managed and professional services, products, and training is tailored to fit your specific needs. For more information on software security, visit synopsys.com/software-integrity.

About Synopsys IP

Synopsys is a leading provider of high-quality, silicon-proven semiconductor IP solutions for SoC designs. The broad Synopsys IP portfolio includes logic libraries, embedded memories, analog IP, wired and wireless interface IP, security IP, embedded processors, and subsystems. To accelerate IP integration, software development, and silicon bring-up, Synopsys’ IP Accelerated initiative provides architecture design expertise, pre-verified and customizable IP subsystems, hardening, and signal/power integrity analysis. Synopsys’ extensive investment in IP quality, comprehensive technical support and robust IP development methodology enables designers to reduce integration risk and accelerate time-to-market.

For more information on Synopsys IP, visit synopsys.com/ip.