Broad IP Portfolio

Synopsys is a leading provider of high-quality, silicon-proven IP solutions for SoC designs. The broad Synopsys IP portfolio includes logic libraries, embedded memories, In-chip PVT monitors, analog IP, wired and wireless interface IP, security IP, embedded processors and subsystems.

To accelerate your product development cycle, Synopsys' IP Accelerated initiative offers SoC architecture design support, IP subsystems, signal integrity/power integrity analysis and IP hardening, IP prototyping kits, and comprehensive silicon bring-up support.

Synopsys' extensive investment in IP quality, comprehensive technical support and robust IP development methodology enable designers to reduce integration risk and accelerate time-to-market.

<table>
<thead>
<tr>
<th>USB</th>
<th>Processes</th>
<th>Controllers/Features</th>
<th>HS Access & Test</th>
<th>Verification IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB4</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Device, Router, Host Router</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB-C 3.2 / DisplayPort 1.4TX</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Device, Host, DisplayPort Tx, HDCP ESM, DSC</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB 3.2</td>
<td>✓ ✓ ✓ ✓</td>
<td>Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB-C 3.1 / DisplayPort 1.4</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, DisplayPort Tx (HDCP ESM, DSC)</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB-C 3.1</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB 3.1</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB-C 3.0</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB 3.0</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>USB 2.0 / USB-C 2.0</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>eUSB2</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Dual-Role Device, Device, Host</td>
<td>✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIPI</th>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Verification IP</th>
<th>Auto Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/D-PHY</td>
<td>40/45 nm 28 nm 22 nm 20 nm 14/16nm FinFET 12nm FinFET 7nm FinFET 5nm FinFET</td>
<td>✓ ✓ ✓ ✓ ✓ CSI-2, DSI/DSI-2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>D-PHY</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>M-PHY</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>CSI-2</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>DSI</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>DSI + DSC</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>UniPro</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>I3C</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
</tbody>
</table>
Interface IP

PCI Express

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Configuration</th>
<th>IDE Security Module</th>
<th>HS Access & Test</th>
<th>Verification IP</th>
<th>Auto Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HDMI

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Verification IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI 2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI 2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP 1.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CXL

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Configurations</th>
<th>IDE Security Module</th>
<th>Verification IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXL 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CCIX

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Verification IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCIX 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCIX 1.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HBM

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Verification IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBM3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBM2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBM2E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ethernet

<table>
<thead>
<tr>
<th>Process Technologies</th>
<th>Controllers</th>
<th>Verification</th>
<th>Auto Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>28nm</td>
<td>14/16nm FinFET</td>
<td>7nm FinFET</td>
<td>5nm FinFET</td>
</tr>
<tr>
<td>112G Ethernet (100G/200G/400G/800G)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>56G Ethernet (100G/200G/400G)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>RXAUI/Double XAUI (6.25 G)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>1000BASE-KX, 10GBASE-KR, 10GBASE-KX4</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>40GBASE-KR4, 40GBASE-CR4, XLAUI</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>100GBASE-CR10, CAUI</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>100GBASE-DR4/CR4, CAUI4</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>10GBASE-KR2/1</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>SGMII</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>QSGMII</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>XFI, SFI (SFF-8431)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>GMII/MII, RGMII, RTBI, TBI, SMII, RMII, RevMII, XGMII, XLGMII</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>IEEE TSN/AVB Standards: IEEE 802.1AS, 802.1AS-Rev, 802.1Qav, 802.1Qat, 802.1Qbv, 802.1Qbu & 802.3br</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>25G/50G Ethernet Consortium and IEEE specifications</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>2.5G/5.0G USXGMII</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Interface IP</td>
<td>Process Technologies</td>
<td>Controllers</td>
<td>Verification IP</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Ethernet (continued)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Technologies</td>
<td>28nm</td>
<td>14/16nm FinFET</td>
<td>7nm FinFET</td>
</tr>
<tr>
<td>Additional Enterprise Protocols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIF, CEI-6G/11G</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CPRI, OBSI, JESD204 A/B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SRIO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Die-to-Die</td>
<td>Process Technologies</td>
<td>Controllers</td>
<td>Verification IP</td>
</tr>
<tr>
<td>Die-to-Die HBI/AIB</td>
<td>12nm FinFET</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Die-to-Die 112G USR/XSR</td>
<td>7nm FinFET</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SATA</td>
<td>Process Technologies</td>
<td>Controllers</td>
<td>Verification IP</td>
</tr>
<tr>
<td>SATA 6G</td>
<td>65nm</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SATA 3G</td>
<td>55nm</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bluetooth, Thread, Zigbee</td>
<td>Process Technologies</td>
<td>Controller (Link Layer / MAC)</td>
<td></td>
</tr>
<tr>
<td>Bluetooth LE 5.2</td>
<td>55nm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>IEEE 802.15.4 (Thread, Zigbee)</td>
<td>40nm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Combo Bluetooth LE/IEEE 802.15.4</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mobile Storage</td>
<td>Process Technologies</td>
<td>Controllers</td>
<td>Verification IP</td>
</tr>
<tr>
<td>UFS</td>
<td>28nm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UniPro</td>
<td>14/16nm FinFET</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>M-PHY</td>
<td>12nm FinFET</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>eMMC</td>
<td>10nm FinFET</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SD</td>
<td>7nm FinFET</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SDIO</td>
<td>6nm FinFET</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AMBA</td>
<td>Synthesizable IP</td>
<td>Verification IP</td>
<td></td>
</tr>
<tr>
<td>AMBA APB 3/4, AHB 2/5, AXI 3/4</td>
<td>interconnect fabric, bridges, interconnect matrices and infrastructure IP</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>AHB and AXI DMA Controllers</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SSI Controller (SPI/xSPI)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>AMBA Advance peripherals (I²C, I²S, UART)</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Timers, WDT, RTC, interrupt controllers, GPIOs</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Datapath IP</td>
<td>Synthesizable IP</td>
<td>Simulation Models (C++, Verilog)</td>
<td>Verification Models</td>
</tr>
<tr>
<td>Floating Point Functions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fixed Point Functions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trigonometric Functions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Analog IP

<table>
<thead>
<tr>
<th>Data Converters</th>
<th>Process Technologies</th>
<th>Bits</th>
<th>MSPS</th>
<th>Channel Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90nm</td>
<td>55nm</td>
<td>40nm</td>
<td>28nm</td>
</tr>
<tr>
<td>300-1000 MSPS ADCs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>150-300 MSPS ADCs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10-150 MSPS ADCs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td><10 MSPS ADCs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>300-1000 MSPS DACs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td><100 MSPS DACs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Foundation IP

<table>
<thead>
<tr>
<th>Embedded Memories</th>
<th>Process Technologies</th>
<th>65nm</th>
<th>55nm</th>
<th>40/45nm</th>
<th>28nm</th>
<th>22nm</th>
<th>14/16nm FinFET*</th>
<th>12nm FinFET</th>
<th>10nm FinFET</th>
<th>8nm FinFET*</th>
<th>7/6nm FinFET</th>
<th>5nm FinFET</th>
<th>4nm FinFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ternary Content-Addressable Memory (TCAM)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-port Memories</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Speed Single Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ultra High Speed Single Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Speed Dual Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Speed 1P Register File (RF) (Cache)</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Speed Asynchronous 2-Port Register File</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High Performance Core (HPC) Design Kit</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High Speed 2P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ultra High Speed 2P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High Speed Pseudo 4P/QP SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density Single Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density Dual Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density 1P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density 2P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density 3P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density ROM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>High-Density 2P,3P Async Latch Based Compiler</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UHD 1P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>EHD 1P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UHD Single Port SRAM</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UHD 2P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>EHD 2P RF</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>UHD 2P SRAM</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

*Available in Consumer and Automotive
Foundation IP

<table>
<thead>
<tr>
<th>Logic Libraries</th>
<th>Process Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65nm</td>
</tr>
<tr>
<td>High-Speed Library</td>
<td>✓</td>
</tr>
<tr>
<td>High-Speed POK</td>
<td>✓</td>
</tr>
<tr>
<td>High-Density Library</td>
<td>✓</td>
</tr>
<tr>
<td>High-Density POK</td>
<td>✓</td>
</tr>
<tr>
<td>UHD Library</td>
<td>✓</td>
</tr>
<tr>
<td>UHD POK</td>
<td>✓</td>
</tr>
<tr>
<td>Ultra-low leakage (thick oxide)</td>
<td></td>
</tr>
<tr>
<td>High-Performance Core (HPC) Design Kit</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Available in Consumer and Automotive

I/O Products

<table>
<thead>
<tr>
<th>I/O Products</th>
<th>22nm</th>
<th>14/16nm FinFET</th>
<th>12nm FinFET</th>
<th>6/7nm FinFET</th>
<th>5nm FinFET</th>
<th>4nm FinFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose I/Os</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Specialty I/Os</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto Grade</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-Volatile Memory

<table>
<thead>
<tr>
<th>Non-Volatile Memory</th>
<th>150/180nm</th>
<th>110/130nm</th>
<th>80/90nm</th>
<th>55/65nm</th>
<th>40nm</th>
<th>28nm</th>
<th>22nm</th>
<th>14/16nm FinFET</th>
<th>12nm FinFET</th>
<th>Bit Counts</th>
<th>Endurance (Write Cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Time Programmable (OTP)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>16 bit to 1 Mbit</td>
<td>1 per instance</td>
</tr>
<tr>
<td>Multi-Time Programmable (MTP) Medium-Density</td>
<td>180nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16 bit to 512 Kbit</td>
<td>Up to 1,000</td>
</tr>
<tr>
<td>MTP EEPROM</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>128 bit to 8 Kbit</td>
<td>Up to 1,000,000</td>
</tr>
<tr>
<td>MTP ULP</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 bit to 4 Kbit</td>
<td>Up to 100,000</td>
</tr>
<tr>
<td>Few-Time Programmable (FTP) Trim</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 bit to 4 Kbit</td>
<td>Up to 1,000</td>
</tr>
<tr>
<td>Auto Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

In-Chip PVT Monitoring IP

<table>
<thead>
<tr>
<th>In-Chip PVT Monitoring IP</th>
<th>28nm</th>
<th>16nm FinFET</th>
<th>12nm FinFET</th>
<th>7nm FinFET</th>
<th>6nm FinFET</th>
<th>5nm FinFET</th>
<th>3nm FinFET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Detector</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Voltage Monitor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Temperature Sensor</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Distributed Thermal Sensor</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thermal Diode</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Catastrophic Trip Sensor</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>In-Chip PVT Monitoring Subsystem</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Soft IP							
PVT Controller	✓	✓	✓	✓	✓	✓	✓
Software Driver	✓	✓		✓	✓	✓	✓
Path Margin Monitor IP

<table>
<thead>
<tr>
<th>Security IP</th>
<th>Synthesizable IP</th>
<th>Software</th>
<th>Safety Compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptography IP</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Security Protocol Accelerators</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Hardware Secure Modules with Root of Trust</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>HDMI/DisplayPort/USB Type-C Content Protection IP</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PCIe & CXL Integrity and Data Encryption IP</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DDR/LPDDR Inline Memory Encryption IP</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Accelerate Development of Performance-Efficient SoCs

Synopsys ARC® Processors are a family of 32-/64-bit CPUs and DSPs that SoC designers can optimize for a wide range of uses, from deeply embedded to high-performance host applications in a variety of market segments. Designers can differentiate their products by using patented configuration technology to tailor each ARC processor instance to meet specific performance, power and area requirements. The Synopsys ARC processors are also extensible, allowing designers to add their own custom instructions that dramatically increase performance. Synopsys’ ARC processors have been used by over 275 customers worldwide who collectively ship more than 2.5 billion ARC-based chips annually.

All Synopsys ARC processors utilize a 16-/32-/64-bit ISA that provides excellent performance and code density for embedded and host SoC applications. The RISC and DSP processors are synthesizable and can be implemented in any foundry or process, and are supported by a complete suite of development tools.

Synopsys ARC processors are supported by a broad ecosystem of commercial and open source tools, operating systems and middleware. This includes offerings from leading industry vendors who are members of the ARC Access Program as well as a comprehensive suite of free and open source software available through embARC.org.

Processor IP

<table>
<thead>
<tr>
<th>ARC 32-bit Processors</th>
<th>Max CCM Size (I&D)</th>
<th>Cache Size (I&D)</th>
<th>DSP</th>
<th>MPU</th>
<th>Safety Certified</th>
<th>Enhanced Security Package</th>
<th>MMU</th>
<th>Floating Point</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM4</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM6</td>
<td>2MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM5D</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM7D</td>
<td>2MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM9D</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM11D</td>
<td>2MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>EM22FS</td>
<td>2MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SEM110</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SEM120D</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SEM130FS</td>
<td>2MB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>605 LE</td>
<td>512KB</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>710D</td>
<td>512KB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>725D</td>
<td>512KB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>770D</td>
<td>512KB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>610D</td>
<td>512KB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>625D</td>
<td>512KB</td>
<td>32K</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>AS211SFX</td>
<td>512KB</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>AS221BD (dual-core)</td>
<td>512KB ea core</td>
<td>32K ea core</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

synopsys.com/ip
Processor IP

ARC HS

<table>
<thead>
<tr>
<th>32-bit Processors</th>
<th>Max CCM Size</th>
<th>L1 Cache (I & D)</th>
<th>DSP</th>
<th>Safety Certified</th>
<th>L1 Coherency</th>
<th>L2 Cache</th>
<th>MMU</th>
<th>Floating Point</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS34, HS34x2, HS34x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS36, HS36x2, HS36x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS38, HS38x2, HS38x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS44, HS44x2, HS44x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS46, HS46x2, HS46x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS48, HS48x2, HS48x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS50, HS50x2, HS50x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS52, HS52x2, HS52x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS54, HS54x2, HS54x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS56, HS56x2, HS56x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS58, HS58x2, HS58x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS60, HS60x2, HS60x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS62, HS62x2, HS62x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS64, HS64x2, HS64x4</td>
<td>16MB</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

ARC HS

<table>
<thead>
<tr>
<th>64-bit Processors</th>
<th>Max CCM Size</th>
<th>L1 Cache (I & D)</th>
<th>L1 Coherency</th>
<th>Shared L2 Cache/Cluster Mem.</th>
<th>MMU</th>
<th>Floating Point</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS66, HS66MP</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>64MB (MP)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HS68, HS68MP</td>
<td>16MB</td>
<td>64K</td>
<td>✓</td>
<td>64MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

ARC VPX DSP

<table>
<thead>
<tr>
<th>Processors</th>
<th>Scalar Execution Unit</th>
<th>Vector Execution Unit</th>
<th>Vector Length</th>
<th>Dual SIMD Multiply Units</th>
<th>Dual Floating Point Vector Engine (optional)</th>
<th>Floating Point Vector Math Engine (optional)</th>
<th>Safety Certified</th>
<th>L1 Coherency</th>
<th>Multicore configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPX2</td>
<td>✓</td>
<td>3</td>
<td>128-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x</td>
</tr>
<tr>
<td>VPX2FS</td>
<td>✓</td>
<td>3</td>
<td>128-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x</td>
</tr>
<tr>
<td>VPX3</td>
<td>✓</td>
<td>3</td>
<td>256-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x</td>
</tr>
<tr>
<td>VPX3FS</td>
<td>✓</td>
<td>3</td>
<td>256-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x</td>
</tr>
<tr>
<td>VPX5</td>
<td>✓</td>
<td>3</td>
<td>512-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x, 4x</td>
</tr>
<tr>
<td>VPX5FS</td>
<td>✓</td>
<td>3</td>
<td>512-bit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2x, 4x</td>
</tr>
</tbody>
</table>

ARC NPX

<table>
<thead>
<tr>
<th>Processors</th>
<th>MACs</th>
<th>DMA</th>
<th>L2 Shared Memory</th>
<th>L2 Controller</th>
<th>Tensor Accelerator</th>
<th>Tensor Floating Point Unit (FPU) (optional)</th>
<th>Trace</th>
<th>Memory Management Unit (MMU)</th>
<th>ASIL B/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPX6-4K</td>
<td>4,096</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6-8K</td>
<td>8,192</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6-16K</td>
<td>16,384</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6-32K</td>
<td>32,768</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6-64K</td>
<td>65,536</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6-96K</td>
<td>98,304</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-4K</td>
<td>4,096</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-8K</td>
<td>8,192</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-16K</td>
<td>16,384</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-32K</td>
<td>32,768</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-64K</td>
<td>65,536</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NPX6FS-96K</td>
<td>98,304</td>
<td>✓</td>
<td>0-64 MB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
IP Accelerated Initiative

With IP Accelerated, Synopsys has augmented its broad portfolio of silicon-proven Synopsys IP portfolio with SoC architecture design support, IP subsystems, signal integrity/power integrity analysis and IP hardening, IP prototyping kits, and comprehensive silicon bring-up support to accelerate your product development cycle.

IP Subsystems support many protocols and deliverables for IP integration including configuration scripts, test environment, test scripts, linting, CDC checks, RDC checks, synthesis scripts and implementation scripts. The subsystems also include AMBA or native bus, clock management, reset, DMA, interrupts, memory, power management, debug and test logic.

Hardening and SIPI provide a GDSII for integration in an SoC and include On-chip decoupling capacitance, power and ground pins, PHY & SDRAM termination strategy, SoC package design, PCB stack-up and trace width/spacing, performance at required data rate, read/write/address, and command/control timing budgets.

With your vision and our expertise, we can tune IP to your SoC, enabling your team to focus on product differentiation.
IP Subsystems

<table>
<thead>
<tr>
<th>Interface IP Subsystems</th>
<th>Auto Grade</th>
<th>UVM</th>
<th>Spyglass</th>
<th>SRAM/MBIST</th>
<th>UPF</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe/CXL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe-Ethernet, PCIe-USB, PCIe-SATA PCIe-CCIX, CXL</td>
<td>ASIL B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DDR3/4/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDR-LPDDR4/4X/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBM</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet-PCIe, Ethernet-USB</td>
<td>ASIL B</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>USB</td>
<td>USB-DP, USB-DP-HDMI, USB-PCIe, USB-Ethernet</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HDMI</td>
<td>HDMI-DP, HDMI-USB-DP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>MIPI</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configurable IP Subsystems

<table>
<thead>
<tr>
<th>Configurable IP Subsystems</th>
<th>Auto Grade</th>
<th>UVM</th>
<th>Spyglass</th>
<th>SRAM/MBIST</th>
<th>UPF</th>
<th>DFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXL 2.0 switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe switch</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACsec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal/Power Integrity Analysis & IP Hardening

Supported IP

<table>
<thead>
<tr>
<th>Multi-Protocol Support</th>
<th>Consultation Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR, LPDDR, HBM, PCIe, USB, MIPI, Ethernet, HDMI</td>
<td>On-chip decoupling capacitance, power and ground pins, PHY & SDRAM termination strategy, SoC package design, PCB stack-up and trace width/spacing, performance at required data rate, read/write/address, command/control timing budgets</td>
</tr>
</tbody>
</table>

IP Hardening

<table>
<thead>
<tr>
<th>Supported IP</th>
<th>Multi-protocol Support</th>
<th>Synthesis to GDSII</th>
<th>Floor Planning</th>
<th>Scan Insertion</th>
<th>Power Grid</th>
<th>Skew Balancing</th>
<th>RDL Routing</th>
<th>Bump Assignment</th>
<th>IR/EM-Analysis</th>
<th>DRC/LVS</th>
<th>GLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR/LPDDR</td>
<td>✓</td>
</tr>
<tr>
<td>HBM2E / HBM3</td>
<td>✓</td>
</tr>
<tr>
<td>PCIe</td>
<td>✓</td>
</tr>
</tbody>
</table>

Signal/Power Integrity Analysis

<table>
<thead>
<tr>
<th>Supported IP</th>
<th>Multi-protocol Support</th>
<th>Floorplan Review</th>
<th>Pre/Post Layout Analysis</th>
<th>Decap Cell Size/Placement</th>
<th>Power Impedance Simulations</th>
<th>Eye Quality Analysis</th>
<th>End to End Analysis</th>
<th>Timing Budget Analysis</th>
<th>Signal Quality PVT Corner Analysis</th>
<th>Full Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR/LPDDR</td>
<td>✓</td>
</tr>
<tr>
<td>HBM2E / HBM3</td>
<td>✓</td>
</tr>
<tr>
<td>HBI</td>
<td>✓</td>
</tr>
<tr>
<td>PCIe</td>
<td>✓</td>
</tr>
<tr>
<td>MIPI</td>
<td>✓</td>
</tr>
<tr>
<td>Ethernet</td>
<td>✓</td>
</tr>
<tr>
<td>Protocol/Standard</td>
<td>IP Prototyping Kit with ARC HS DP</td>
<td>IP Prototyping Kit with PCIe Connection to PC</td>
<td>IP Prototyping Kit with ARC HSDK</td>
<td>IP Prototyping Kit with PCIe Connection to PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--------------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soft Deliverable</td>
<td>Soft Deliverable</td>
<td>Soft Deliverable</td>
<td>Soft Deliverable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB 3.1 Host</td>
<td></td>
</tr>
<tr>
<td>USB 3.1 Device</td>
<td></td>
</tr>
<tr>
<td>CXL 2.0 EndPoint</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXL 2.0 Root Complex</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 5.0 Endpoint</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 5.0 Root Complex</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 4.0 Endpoint</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 4.0 Root Complex</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 3.0 Endpoint</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCIe 3.0 Root Complex</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDR 4/3</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPDDR 4</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DDR 5 / Memory Model PHY</td>
<td></td>
</tr>
<tr>
<td>LPDDR 5 / FPGA PHY</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information on Synopsys IP, visit synopsys.com/ip.