ASIP Designer
Application-Specific Processor Design Made Easy
Enabling the Design of Multicore SoCs with Application-Specific Instruction Set Processors

Offloading performance or power-critical functions from a merchant processor into specialized accelerators is commonplace in today’s SoC designs. Such accelerators are specialized to the application in order to deliver the needed performance in the lowest power envelope, and they can be activated only when needed. These accelerators are implemented as application-specific instruction-set processors (ASIPs) or as fixed-function hardware.

The design of ASIPs comes with the need to define the best suited processor architecture, and to develop both the hardware implementation and the associated software development kit (SDK). While the value of an ASIP is well-understood, SoC design teams have often gone back to standard processors because they were unable to complete an ASIP design on time and within budget.

Moving functions into fixed-function hardware accelerators comes with a heavy cost, as well: loss of programmability, and therefore loss of flexibility after manufacture. This is intolerable with advanced process technology nodes, where high mask costs necessitate the reuse of silicon in multiple products and product generations, to expand the revenue lifetime of an SoC.

Fortunately, today’s SoC designers can rely on tools such as Synopsys’ ASIP Designer to build multicore SoCs with ASIPs. Such designs can be specialized to the application in order to meet the performance and power requirements, but still retain software programmability.

Automating Application-Specific Instruction-Set Processor Design—ASIP Designer

ASIPs rely on similar techniques as used in the design of hardware accelerators to reach high performance and low power: heavy use of parallelism and specialized datapath elements. Yet ASIPs retain software programmability within their application domain, resulting in C/C++ programmable processors and accelerators with the lowest power possible. ASIP Designer is a tool suite that brings ASIP design within easy reach of every SoC team. Key capabilities include rapid exploration of architectural choices, generation of an efficient C/C++ compiler-based software development kit that automatically adapts to every architectural change, and automatic generation of power and area-optimized synthesizable RTL.

Join our Growing Customer Base

If offload, acceleration, flexibility, power optimization, and time-to-market are important to you, ASIP Designer may be just what you are looking for. Join the many semiconductor, system and IP companies that are shipping products today built with our tools. Proven applications areas include: wireless, wireline, vision, video, imaging, audio, wearable medical, security, automotive, industrial, network processing and high-performance computing. A wide range of example ASIP designs with highly differentiating architectures provided in source code allows designers to quickly start designing their own ASIP targeting their specific application requirements.

Synopsys also offers modeling services relating to its ASIP Designer tool suite, to help its customers get to the market in the fastest possible way.

ASIP Designer

Architectural Exploration, Software Development Kit and Hardware Generation for ASIPs

ASIP Designer’s patented technology supports the following features:

- Modeling of ASIP instruction-set architectures in the nML processor description language. In addition to nML, the ASIP’s periphery can be modeled in cycle- and bit-accurate C code. nML offers unprecedented architectural breadth enabling processor development for almost any vertical market.
ASIP Designer comes with a large set of example models, written in nML. These include controllers, SIMD and VLIW architectures, as well as application-specific accelerators. All models are provided in source code and serve both as a reference, as well as a starting point for your own ASIP.

Unique compiler-in-the-loop technology, enabled by the automatic generation of a comprehensive software development kit (SDK) for each ASIP modeled in nML, containing the following components:

- An optimizing compiler, recognized for its efficient code generation and quick and automatic retargetability to new ASIP architectures. The compiler supports C, optionally extended with user-defined data types and operators, C++, and OpenCL C (OpenCL kernel language).
- A fast instruction-set simulator, offering both cycle-accurate and instruction-accurate abstraction levels and easy integration into signal-level and transaction-level (TLM2) virtual prototypes
- A flexible (multicore) debugger that can be used in connection to both instruction-set simulators and on-chip debug hardware (via JTAG)
- Multi-faceted profiling capabilities to analyze the instruction-set architecture for hot-spots and to drive the architectural optimization process

Automatic generation of a power- and area-efficient hardware implementation of each ASIP, in synthesizable Verilog or VHDL. This allows to analyze implementation-related metrics such as power consumption, area efficiency, and timing closure at any stage of the design process, enabling a synthesis-in-the-loop approach.

Multi-faceted verification capabilities, including a wide range of formal checks, the automatic generation of ASIP-specific test programs in C and assembly code, and the integration into UVM-based verification flows.

ASIP Programmer

Deployment of Software Development Kits to User Communities

Under Synopsys’ ASIP Programmer service, ASIP-specific versions of the SDK, including optimizing C/C++ compiler, instruction-set simulator and debugger, can be created from the ASIP Designer tool suite. Such an ASIP-specific SDK can then be distributed to the user community of the ASIP to enable the development and implementation of application software. Your customers obtain a high-quality, fully-featured SDK on the first day of availability of your ASIP.