
WHITE PAPER

synopsys.com

Introduction
As process technologies shrink, design teams can fit increasing amounts of logic in a single
chip, combining functionality that was captured in the past by discrete devices. This increased
functional complexity often accompanies more configurability, allowing portions of the logic
to be selectively enabled, depending on the task being executed. Examples include a mobile
chip that disables graphics processing logic when the display is not in use, or a multiprocessor
configuration that can enable specific cores to complete a given processing task. Figure 1
shows the increase in modes and the corresponding increase in scenarios at smaller nodes.

2

90nm

Modes

65nm

Scenario increase

40nm 28nm

5 10
3 7

21

5
11

55

10
15

150

Corners

Scenarios

Figure 1: Mode and scenario increases

Faced with this increasing complexity, design teams must ensure that the chip meets its
performance objectives in each different functional configuration. In addition to functional
modes, it is common to have several test modes plus other modes designed to verify specific
timing or I/O conditions.

For signoff purposes, these different configurations are typically represented as timing modes
and are captured via timing constraints. Developing and managing these various modes
individually has the following benefits:

Author
Ron Craig
Technical Marketing Manager,
Synopsys

PrimeTime Mode Merging
Reducing Analysis Cost for Multimode Designs

http://synopsys.com

2

• Parallel development – allowing the design and test teams to develop their own modes independently, rather than trying to figure
out how to combine them

• Opportunity for reuse – especially for design-independent modes covering functions like test

• Fine-grained control over the signoff process – analysis can focus on specific timing-critical mode and corner combinations
requiring late-stage closure effort

PrimeTime® mode merging technology retains the benefit of writing individual modes, while providing an automated path to generate
superset modes to minimize ECO and timing closure turnaround time. This avoids the risk and complexity of manual mode merging,
while keeping the runtime and resource reduction benefits of merged modes.

Modes and Their Impact on Timing Closure

Design teams need to confirm that a given chip functions as expected under all possible configurations. Completing timing closure
requires the following tasks:

• Configuring modes and setup timing analysis to take account of those modes

• Managing timing analysis runs

• Reviewing the results of multi-mode timing analysis

Management of timing closure is of particular concern; an increasing number of modes implies more runs, and hence requires either
longer overall turnaround time, more hardware resources, or a combination of both. Figure 2 highlights how the number of modes in a
design affects the number of ECO iterations needed to close timing. Designs with fewer than ten modes typically need fewer than ten
ECO iterations, but designs with more than ten modes are much more likely to see more than ten iterations.

350

300

250

200

150

100

50

0
Fewer than 10 modes

Re

sp
on

de
nt

s

More than 10 modes

1-4 iterations

5-9 iterations

10-15 iterations

15 or more iterations

Figure 2: Effect of number of modes on number of ECO iterations required to close timing

For final signoff, design teams usually perform analysis across all mode and corner combinations. This provides complete visibility
into the conditions under which any timing issues occur, allowing them to trace the source of a specific violation and determine
whether it can be safely waived.

Typical Approaches to Dealing With Mode Complexity

The choice between comprehensive analysis and fast turnaround

Design teams working with multimode designs are faced with conflicting demands – they need to complete comprehensive signoff
while working within the constraints of their hardware resources and tape-out deadline. Each different mode potentially requires
a separate timing analysis run, which requires more time and resources. When the finite limits of time and resources are reached,
compromises must inevitably be made. Let’s consider some typical compromises and the pros and cons of each.

3

Approach #1: Select the worst-case modes

When faced with an increasing number of modes, design teams often select the most important modes, the worst-case modes, for
timing analysis. If the worst-case modes meet timing, other configurations would also meet timing.

Using a worst-case subset of the timing scenarios certainly reduces the number of runs, but this selective approach is not
guaranteed to catch all of the worst timing violations.

Approach #2: Manual mode merging

Another approach taken by design teams is to manually merge selected modes. Manual mode merging typically requires expertise in
both the design and timing constraints, and can therefore become a time-consuming joint effort between design owners and signoff
timing engineers. To ensure correctness of the merged constraints, the merging process should be repeated every time there is a
change to the design or original constraints – further increasing its impact on signoff schedules.

Approach #3: Add more hardware

A more popular option is to take advantage of parallel computing techniques. If your resources allow you to run n jobs in parallel,
maintaining a fixed turnaround time requires n machine and license resources. If the next chip has twice as many modes as the last
chip, with all other things being equal, you will need double your computing resources to complete analysis and timing closure in the
same amount of time. Logistically, this may be the easiest way to address the problem of mode coverage, but it has an associated
cost and does not help reduce the effort of reviewing the analysis results across all of the different modes.

Approach #4: Relax the project schedule

If the task cannot be parallelized by adding more compute resources, the increase in modes results in increased turnaround time.
Remember that an increase in modes inevitably means an increase in scenarios (where a scenario is a combination of a mode with a
process corner), so adding a mode does not simply add a run; it adds a number of runs equal to the number of corners. The new runs
are run in serial on the available resources. In most situations, relaxing the project schedule incrementally is not a viable option.

The following sections describe the PrimeTime approach to mode merging, and how its architecture avoids the compromises
outlined above.

PrimeTime Mode Merging Technology

PrimeTime mode merging technology identifies superset modes that together replicate how a given design is constrained by
the original individual mode constraints. The example in Figure 3 shows nine original modes merged into three superset modes
(M1, M2, and M3).

m2

m1

m4

m3

m8

m7

M1

M3

M2

m6

m5

m9

Figure 3: Mode compatibility graph

4

In Figure 3, a line joining two modes (for example, m2 and m7) indicates that they can be merged. A ‘superset’ is a group of modes
that can all be merged with one another. Notice how modes m3 and m8 can be merged, but mode m8 cannot be merged with any
other modes, so m3 and m8 are merged as part of a separate group, M2.

These merged superset modes satisfy the following criteria:

• Any timing violation identified in an individual mode is also identified when using merged mode constraints.

• If a timing path occurs in any of the individual modes, it must be present in the merged mode.

• If a timing path occurs in the merged mode, it must be present in at least one of the individual modes.

Mode merging reduces timing analysis turnaround time (TAT) without missing any timing violations.

Examples of Mode Merging

The following examples show individual modes and the outcome of the merging process. In Example 1, the modes are suitable for
merging, and the merging result is provided. Example 2 shows two modes that are not suitable for merging.

Example 1: Two modes that can be automatically merged

FF3

FF2

FF1
SEL

CLK

0

1

mode1.sdc
create_clock –period 5 [get_ports CLK]
set_case_analysis 0 [get_ports SEL]

mode2.sdc
create_clock –period 5 [get_ports CLK]
set_case_analysis 1 [get_ports SEL]

merged mode SDC
create_clock –period 5 [get_ports CLK]
set_disable_timing [get_ports SEL]

In this example, the merged mode does not retain the set_case_analysis settings in the individual modes. The merged mode
constraints add a set_disable_timing constraint on the SEL input port, since it is not active in any of the original modes.

Example 2: Two modes that cannot be automatically merged

C1
buf1

mode3.sdc
create_clock –name clk_mode1 [get_ports C1] …
create_generated_clock –name gclk_mode1 \
 [get_pins buf1/Z]

mode4.sdc
create_clock –name clk_mode2 [get_ports C1] …

In this example, mode3 and mode4 cannot be merged since the gclk_mode1 generated clock in mode3 would block the propagation
of the clk_mode2 clock in mode4.

Compatibility With an Existing PrimeTime Setup

Mode merging uses the PrimeTime distributed multi-scenario analysis (DMSA) infrastructure, and can easily be added to an existing
PrimeTime setup for a multi-scenario design. This minimizes the effort needed to set up mode merging, and ensures that the
scenario and constraint setup used for PrimeTime analysis is identical to that being used for mode merging.

5

The following script example shows the mode merging flow:

define modes and corners
set modes {MODE1 MODE2 MODE3}
set corners {best worst}
<add DMSA-specific setup>
create scenarios
<mode/corner combinations to create analysis scenarios>
merge modes
<run mode merging>

Fast Assessment of How Well Mode Constraints Can Be Merged

In increasingly complex multi-scenario designs, it can be difficult to maintain constraint consistency between modes. Constraint
additions or modifications made manually during timing analysis in one mode might not always be reflected in other modes. Since
the timing behavior of such modes, if merged, could be significantly different from the original mode timing, therefore such conflicting
modes are not merged.

PrimeTime mode merging technology offers an up-front assessment of how well a given set of modes can be merged – before
embarking on the full mode merging process and will highlight constraint conflicts that prevent merging and avoiding timing
discrepancies between merged and unmerged constraints. The assessment report also provides an example of the constraint
that would need to be added to resolve the merging conflict. Revisiting Example 2, the assessment report would provide the
following guidance:

An internal clock gclk_mode1 defined at mode3.sdc line 2 would stop propagation of clock clk_mode2 defined
at mode4.sdc line 1. Consider adding a similar clock in mode mode4 to allow for mode merging as follows
(please note that you might have to change other constraints that refer to clock names as well):
create_generated_clock –divide_by 1 –name clk_mode2_gen –add \
 –master_clock clk_mode2 –source [get_ports C1]
 [get_pins buf1/Z]

Using Merged Constraints

Reducing the Resource and Runtime to Manage Multimode Designs

PrimeTime mode merging technology reduces the effort required to complete timing analysis with increasing numbers of modes and
scenarios. Table 1 shows a reduction in modes of approximately three times on average. This results in three times faster TAT with
the same hardware resources, or the same TAT with three times fewer hardware resources.

Design size (M instances) Number of original modes Number of merged modes

11 13 3

3.9 9 2

1.5 9 4

1.5 11 7

0.75 8 2

0.36 13 4

23 3 1

Source: Synopsys Customer Test Cases

Table 1: Mode merging results

Even though the merged constraints are marginally more complex than the original constraints, the reduction in PrimeTime ECO or
pure timing analysis turnaround time closely matches the reduction of modes. In Table 2, a three-times reduction in modes shows
a 2.53-times reduction in PrimeTime ECO TAT. The quality of results (QoR) of both original and merged mode ECO runs is virtually
identical, demonstrating that there is no price to pay for reduced ECO TAT.

6

Number of original modes Number of merged modes

Total scenarios 18 6

Available hosts 6 6

Total STA + ECO TAT 346 minutes 137 minutes

Fix rate (setup/hold) 99.1/94.6% 99.1/92.3%

WNS (setup/hold) -5.23/-0.18ns -5.23/-0.18ns

TNS (setup/hold) -1201.52/-62.84ns -1169.12/-69.73ns

Number of violating paths (setup/hold) 1255/3041 1239/3203

Area 2953853 2953628

Saved session size 28.89GB 9.19GB

Table 2: PrimeTime ECO results with merged constraints

It is normal for design teams to complete signoff with all scenarios, but timing analysis runs prior to final signoff are normally
completed with either worst-case scenarios or a set of scenarios that are the outcome of manual merging.

Using PrimeTime merged mode constraints during ECO iterations avoids the risk of these manual approaches in two key ways:

• The design is not overconstrained as it would be if using worst-case modes and scenarios. As a result, timing targets during ECO
iterations are more achievable.

• Manual mode merging can often result in unconstrained endpoints, when subsets of clocks are selected. By definition,
PrimeTime mode merging is designed to avoid this, so timing ‘escapes’ do not happen.

Figure 4 outlines how the mode assessment and merging process fit into a typical design flow. You can easily create a PrimeTime
mode merging script from an existing PrimeTime DMSA setup, by adding specific mode and corner information for each scenario.
The output mode constraints can then be used –within an existing DMSA setup – to drive the PrimeTime ECO step.

Assess how well
constraints can be merged

Perform mode merging

PrimeTime ECO Implementation

Fewer modes reduces
turnaround time hereOriginal constraints

for each mode

Constraints Netlist

Guidance

Mode merging

PrimeTime Signoff

Figure 4: Mode merging in the design flow

©2017 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available
at synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
11/27/17.CS11822_PrimeTime_WP. Pub: Aug. 2013

Conclusion
Scenario growth at smaller geometries poses significant risk to project schedules and budgets. At the early stages of the timing
closure and signoff flow where frequent iterations are common, solutions to reduce turnaround time or hardware cost often come at
the cost of accuracy. Until now, design teams could not reliably reduce scenarios while avoiding inaccuracies, which can ultimately
make timing closure more difficult. PrimeTime mode merging provides actionable guidance that allows design teams to improve
their mode constraints to maximize mode reduction, and ultimately addresses the goal of scenario reduction without compromising
timing accuracy.

https://www.synopsys.com/company/legal/trademarks-brands.html

