

Cho Moon,

R&D Manager,
Synopsys

George

Mekhtarian
Product Marketing

Manager,
 Synopsys

Why Constraint Analysis?
Timing constraints are a crucial specification in the modern integrated circuit (IC) design flow.
Implementation and signoff tools rely on them at almost every step of the design process. The rapid
increase in design size and complexity, as well as the widespread reuse of intellectual property (IP) design
blocks, has led to a major increase in both the extent and the complexity of timing constraints
specification. Ensuring high-quality timing constraints is paramount to efficient design implementation,
especially during handoffs between teams. Incomplete, inconsistent, or conflicting constraints can cause
optimization and implementation tools to run ineffectively or to never converge.

In this paper, we present a unique constraint analysis technology that checks for timing constraints
problems and provides an interactive environment with context-sensitive diagnostic and fixing suggestions.
Using this technology, design teams can save several weeks of engineering effort in a typical IC design
project.

Design Teams and the Challenges with Timing Constraints
Today, it is not uncommon to see timing constraints files that are several hundred thousand of lines long.
Over the last few years, the combination of many factors has led to the explosion of the extent and the
complexity of timing constraints.

The arrival of the system-on-chip (SoC) has pushed design sizes up to the hundreds of millions of instances.
Higher integration has increased the number of clocks and the interactions between them. Additional
design functionality and the advent of low power design techniques have led to a significant increase in
both the number of voltage domains and design scenarios that need to be analyzed and the timing
constraints specifications that go along with them.

Another layer of complexity that design teams often grapple with is frequent design reuse, especially the
use of third-party intellectual IP. Here, design teams face the challenge of not being the original designers
of these particular design blocks and their timing constraints. Debugging problems with your own
constraint specifications is difficult but manageable. Diagnosing and debugging third-party designs and
their timing constraints can be challenging and a drain on precious design time.

With the globalization of IC design teams, verification of timing constraints becomes paramount during
handoffs between groups, especially when they are geographically dispersed. Iterations due to bad
constraint handoff between front-end and back-end design teams, for example, can be costly, especially
when the design schedules are tight.

White Paper

Boosting Designer Productivity by Using
Look-ahead Constraint Analysis Technology

August 2010

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 2

Some common issues that design teams face with timing constraints are:

 Missing constraints

 Incorrect constraints

 Conflicting constraints

 Over-constraining conditions

 Redundant constraints

 Inefficiently written constraints (causing long runtimes in tools)

Case Study: Debugging Timing Constraint Problems in Real-time
A design group was implementing a 10 million instance 40nm SoC design that had over 80 clock definitions.
During the timing constraint generation phase, the timing constraints were created for the whole clock network
of the design, but the timing constraint definition of one generated clock with respect to the master clock was
missed. Figure 1 shows the design segment where the issue occurred. A clock was defined on the input port
CLK and a divide-by-2 generated clock was defined on the FF/Q pin with its master clock being CLK.

Figure 1: Generated Clock on FF/Q Has No Source Latency Path from Its Master Clock CLK

The blocks C1 and C2 represent combinational logic clusters comprising thousands of gates along the
propagation path of the clock signal CLK. Due to other logic, a constant value of 1 was being propagated to the
select pin of the MUX. This blocked propagation of the signal from the MUX/A pin to the MUX/Z pin. Therefore,
the master clock CLK was not reaching the clock pin of the FF, leaving the generated clock’s source unclocked.

Manually identifying this timing constraints problem was extremely laborious. While many conditions could
block the clock signal from propagating in the way the designer expected, the designer needed to find out the
root cause of this unexpected behavior before the timing constraints could be completely fixed. In this case, the
direct culprit (the MUX cell) resided in a different part of the design, separated by thousands of gates from
where the timing constraints problem was detected. Moreover, finding the direct culprit was only the first step
in identifying the root cause. In this case, the designer then had to find out why a constant value of “1” was
being propagated to the MUX/S pin when a “0” was expected. This then led to the second culprit followed by
the third culprit and then many more culprits. Fixing the particular timing constraints problem completely was
challenging given that there were thousands of timing constraints applied to the design, and modifying one
impacted other constraints. In this case, modifying a user-defined case setting in the fanin cone of the MUX/S
pin may have corrected this particular timing constraints problem, but the change in the constant value could
have impacted other signals and rerouted clock signals in other parts of the design.

The root cause analysis was a trial-and-error process that required many iterations of the locate-diagnose-fix
flow before the timing constraints closure was achieved. The result was that over half a day of debugging time
was spent on this one issue before any other progress could be made on the design. Had there been dozens of
such issues in the design, the impact on the design schedule would have been catastrophic!

Addressing Timing Constraints Issues

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 3

Over time, design companies have developed some standard ways to deal with timing constraints issues. One
way, illustrated in the previous example, is to ignore issues until they impact design implementation or signoff
runs and then try to fix them case-by-case. This approach can be costly – more iterations and longer tool
runtimes or worse, bad silicon due to missed timing violations.

Another approach is to use a commercial tool that performs constraints analysis and debug. While this approach
has its associated investment, the cost of tool itself and the associated learning curve, integration into the
design flow, and validation of results, the investment can pay major dividends if an effective commercial
constraints analysis tool is selected.

Key Requirements of an Effective Constraint Analysis Tool
For a commercial constraint analysis and debug tool to be effective, it has to satisfy five key criteria:
1. Consistent constraint interpretation

2. Ease of setup and use

3. Fast runtime

4. Interactive, intuitive debug

5. Constraint comparison for the purpose of successful IP integration

As timing constraints can get very complex as we previously discussed, a constraint analysis tool must interpret
exactly the same semantics of constraints as in the target implementation tools and, especially, signoff tools.
Any discrepancy in the effects or precedence of constraints will lead to additional iterations, which can defeat
the very purpose of using the tool in the first place. For example, when several timing exceptions like false paths
and multi-cycle paths overlap, the constraint analysis tool must be able to apply the same exception precedence
rules as the timing signoff tools to determine which constraints affect or do not affect the final timing results.

The constraint analysis tool has to be easy to introduce into your existing design flow. Extra training or tool
setup should be minimal. The tool should be able to use existing constraint files with minimal changes. Ease-of-
use is also important. A look and feel that is similar to existing design implementation and signoff tools
minimizes tool ramp-up time.

Any commercial constraint analysis tool has to deliver results fast. Since this is an additional step that you are
adding to your design flow, you cannot afford hours and days of extra runtime. The tool has to run fast on
complete multi-million instance designs and, in particular, has to run fast during interactive debugging when
multiple runs may be necessary.

Speaking of interactive debugging, the checking and diagnosis must be extremely efficient given the intense
human involvement in the iterative trial-and-error cycles of debugging. Any unnecessary delay during this
process will lead to increased engineering cost and delayed schedules.

The tool must allow designers to find the root causes of timing constraints problems and must aid in fixing them
without introducing new problems. The debugging features of the tool should help you drastically reduce the
search space and make more judicious fix attempts, thereby reducing the number of iterations required. The
turnaround time of iterations should be very short, and changes should be reflected quickly in order to keep the
debug process interactive.

Lastly, since incorporating third-party IP blocks or reusing blocks from other designs is becoming common
practice in today's IC development, the ability to compare block-level versus top-level constraints is crucial. Each
of these predesigned blocks usually comes with a set of constraints that you need to use to build the block. To
guarantee that the block functions as expected, you must ensure that these block constraints are still valid once
the block becomes part of your bigger design. Thus, the constraint analysis tool must provide block-level versus
top-level constraints analysis functionality.

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 4

Introducing Galaxy™ Constraint Analyzer
Synopsys Galaxy Constraint Analyzer is a timing constraint analysis and debugging tool that was engineered and
built from the ground up to satisfy the above requirements. It delivers look-ahead constraint analysis technology
tuned for the Synopsys Galaxy Design Implementation Platform to enable designers to quickly assess the
correctness and consistency of timing constraints. In the remainder of this paper, we will take a closer look at
how Galaxy Constraint Analyzer works and highlight the following important features of the tool:

 Ease of setup and use

 Look-ahead technology

 Fast runtime, interactive user experience

 Flexible rule checking

 Powerful debug commands

 Block-level versus top-level constraint analysis

Galaxy Constraint Analyzer Usage Flow
Galaxy Constraint Analyzer can be quickly integrated into a typical design implementation flow. The tool
requires a Verilog netlist, cell libraries and the design timing constraints in Tcl or SDC format as input. If you are
using any of the Galaxy Design Implementation tools, the tool is extremely easy to setup and run. Using any
existing PrimeTime, Design Compiler or IC Compiler run script, you can simply add a new command to analyze
the design for timing constraints and run the tool. Galaxy Constraint Analyzer ignores commands in the run
script intended for other tools such as reading physical constraints or reporting on timing, noise or power.
Galaxy Constraint Analyzer shares a common core user interface with the Galaxy Implementation Platform tool
suite, giving the new user a common, familiar look-and-feel to the tool environment.

Figure 2: Galaxy Constraint Analyzer usage flow

Look-ahead Constraint Analysis

Galaxy Constraint Analyzer uses technology based on the Synopsys golden PrimeTime timing engine to
propagate timing constraint information through the gate-level netlist. The tool checks for structural compliance
of the timing constraints with various versions of downstream implementation and signoff tools that will

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 5

consume the timing constraints. Ensuring the correct interpretation of timing constraints during analysis gives
designers a signoff-correlated view of the timing constraints early in the design process, reducing design
iterations.

Fast Runtimes, Interactive User Experience
Galaxy Constraint Analyzer is designed to deliver very high performance – it can analyze multi-million instance
designs in a matter of minutes. The tool uses a compact netlist representation that supports hierarchical design
methodologies. Most changes during interactive debugging are performed on the timing constraints. Therefore,
the Galaxy Constraint Analyzer netlist representation is tuned for fast analysis.

The compact memory footprint in Galaxy Constraint Analyzer improves the tool’s capacity to handle hundred-
million instance designs, it also improves the tool’s runtime by reducing paging activities on the compute
resource. Thus, Galaxy Constraint Analyzer can analyze multiple design modes in a single run, further improving
efficiency.

Table 1 illustrates the runtime and memory performance of Galaxy Constraint Analyzer on customer designs
ranging in size from 1 to 10 million instances with two of the designs having multiple modes. All results were
measured on a dual, quad-core Intel Xeon 2.67 GHz machine with 16 GB memory running Red Hat Enterprise
Linux version 4.0. Galaxy Constraint Analyzer was run on a single core.

 Table 1: Galaxy Constraint Analyzer runs in minutes on multi-million gate designs

As we mentioned earlier, Galaxy Constraint Analyzer can analyze modern multi-scenario/mode designs. The
tool’s unique internal design representation allows it to analyze multiple design modes in a single run with
minimal runtime and memory penalty.

Flexible Rule Checking
Galaxy Constraint Analyzer has over 100 built-in constraint checking rules that help designers identify common
constraint problems. These rules are divided into categories that span boundary conditions, exceptions, clocks,
and other general constraints. Table 2 lists the rule categories in Galaxy Constraint Analyzer, followed by the rule
label and type of constraint covered.

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 6

Table 2: Galaxy Constraint Analyzer’s Built-in Rule Categories

In addition to the built-in rules, the tool also provides the designers with the capability to add user-defined rules.
Using the familiar Tcl interface like other Galaxy tools, designers can specify their own rules for their design
environment. For example, if a design team wants to enforce a policy of forbidding negative input/output delay
values, a CAD team member or a designer can write a user-defined rule to flag any input delay or output delay
constraints with negative values as errors.

In Galaxy Constraint Analyzer, the rules can be further configured into rule sets. Whether built-in or user-
defined, the designer can group a set of rules together to make them applicable to a specific design stage. For
example, when a design is still in the pre-layout stage, clocks should not have any propagated latency since the
clock tree is still not in place. One of the rules in a “Pre-Layout” rule set, for example, can look for any clock
constraints that have propagated latency and flag them as errors. Similarly, during post-layout, the designer
would want to use a different rule that allows propagated clock latency but flags ideal clock latency. This
flexibility allows engineers to apply a situation-specific set of rules to reduce false violations and further improve
their efficiency.

Unique Debug Features
Galaxy Constraint Analyzer is unique in its extensive support for debugging constraint violations. The tool is
architected to allow you to debug reported constraint-rule violations in real time as was previously described.
The graphical user interface, shown in Figure 4, provides an intuitive view of the constraint-rule violations by
category, including a help page that explains the violation in detail, direct access to the Tcl or SDC constraint
source file, and a schematic window to visualize the violation.

Once the constraint-rule violation is identified, the tool provides debugging guidance and constraint fixing
recommendations to address the issue. The fast interactive analysis engine then allows you to quickly
implement the constraint fix on the design database to ensure closure.

In the situation where some constraint-rule violations are expected, as is often the case during the earlier
phases of design when constraints are not refined, Galaxy Constraint Analyzer allows you to easily disable rules
or specific violations directly from the GUI environment. This further enhances productivity by filtering out
known and expected rule violations and allowing the designer to focus on the real constraint problems.

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 7

Figure 3: Galaxy Constraint Analyzer Offers a Unique GUI Debug Environment Including a Violation Waiver Feature

Some of the other important features of Galaxy Constraint Analyzer that make it an effective debugger are:

 Clock propagation: The tool traces the propagation of clock sense, which is very important with generated

clocks. The tool also displays generated clock source latency and traversal.

 Datapath propagation: The tool identifies constraints that are blocking data propagation in a region of the

design.

 Detailed case analysis including constant case value propagation: The tool identifies sources of a case value

on a pin and shows forward propagation of constants from a pin.

 Clock network identification: The tool accurately identifies clock networks including a clock interactions

report.

 Analysis coverage across modes: The tool finds timing checks not covered in any mode.

 Unclocked register pins: The tool identifies causes for unclocked pins in the design.

 Timing exception reporting: The tool identifies redundant and dominant exceptions in the design and helps

create a set of concise, yet complete constraints.

Block-level versus Top-level Constraint Analysis and Debug
Earlier, we explained how design teams often face the challenge of frequent design reuse, in particular the use
of third-party IP blocks. The engineers who perform the top-level design integrations are usually not the experts
in these particular design blocks or their timing constraints. Therefore, debugging potential issues can be time
consuming.
Design teams use various strategies to create block-level constraints from top-level constraints. In a bottom-up
design flow, block-level constraints are promoted from the block-level to the top-level. In a top-down flow,
block-level constraints are generated from the top-level via budgeting. During the design iteration process, new
constraints may be manually inserted into both the top-level and block-level designs. Galaxy Constraint Analyzer
allows you to check whether the constraints are consistent after such operations. Each block comes with a set of
constraints under which it was synthesized and placed. These constraints include clock definitions, timing
exceptions, and boundary conditions. Galaxy Constraint Analyzer loads the constraints for both the block-level
instance and the top-level design and performs a comparison between the two sets of constraints. As shown in
Figure 5, the tool’s block-to-top GUI and powerful debugging features then allow you to zoom-in on any
differences. A side-by-side comparison of the top and block constraint files in the GUI help highlight the
differences. The tool generates a set of block-to-top rule violations that can be debugged just like the general
design rules.

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 8

Figure 4: Galaxy Constraint Analyzer Block-level versus Top-level Constraint Analysis GUI

User Experiences
In this section, we share a few real life experiences of design teams who have adopted Galaxy Constraint
Analyzer in their design flow and the benefits they realized.

Galaxy Constraint Analyzer Reduces Constraint Scrubbing Time
One set of designers, a digital technology development group, was able to reduce the constraint scrubbing time
by more than 50% with Galaxy Constraint Analyzer. They cited the following features of the tool as the key
enablers in improving their productivity:

 Fast runtime and small memory usage: They reported 6X faster runtime and 3.8X smaller memory usage

compared to their existing commercial constraint analysis tool.

 Best correlation with signoff timing tools: This allowed them to avoid surprises at the implementation and

signoff phases.

 Good debug capability: The ability to analyze clock networks, data paths, unclocked pins, and report details of

constant propagation allowed them to be more efficient in debugging their design.

Galaxy Constraint Analyzer Reduces Iteration Time
Another design team, involved in home entertainment electronics design, reported that the iteration time
between geographically separated front-end and back-end teams was reduced from days to less than 30
minutes with Galaxy Constraint Analyzer. Using the tool, both teams were able to identify and collaborate on the
problems very clearly, especially problems involving clocks. They found the tool most helpful in finding and fixing
many constraint problems including:

 Missing generated clock definition at some potential clock pins.

 Impossible generated clock versus master clock edge relationships: Such problems previously were detected

only at the signoff stage. Galaxy Constraint Analyzer allowed them to detect and fix such problems in the

early phase of product development.

 All “–to” objects for an exception were invalid: Such invalid exceptions are ignored by timing analysis tools

and may lead to larger optimization and timing closure effort. Galaxy Constraint Analyzer allowed them to

understand the root cause of the problem and rewrite the exceptions.

Boosting Designer Productivity by Using Look-Ahead Constraint Analysis Technology 9

Galaxy Constraint Analyzer Reduces Analysis Time
Lastly, a Graphics Processing Unit (GPU) design group at a large semiconductor company ran Galaxy Constraint
analyzer on one of their 80+ million instance designs. Galaxy Constraint Analyzer finished the analysis in 3 hours
using less than 70 GB of memory. Other commercial constraint analysis tools were not even able to complete
the analysis. The group’s constraint scrubbing turnaround time shrunk from days to hours. This group decided to
run Galaxy Constraint Analyzer every time an engineer modified the constraints. Within two weeks of using the
tool, the CAD team saw significant productivity benefits. Galaxy Constraint Analyzer was then deployed to other
groups where it was quickly able to pinpoint conflicting case analysis definitions and many clock definition
issues.

Conclusion
Constraint analysis is becoming a crucial step to ensure an efficient design implementation and signoff process.
However, in order for a constraint analysis tool to be effective, it has to interpret and analyze constraint
specifications in a manner that is consistent and correlated with implementation and signoff tools.

Galaxy Constraint Analyzer provides an extensive set of rule checks designed to maximize the efficiency of the
Synopsys Galaxy Design Platform. Galaxy Constraint Analyzer uses technology based on the Synopsys golden
PrimeTime timing engine to ensure correct interpretation and propagation of constraints. This gives designers a
signoff-correlated view of the constraints ahead of each step of the design implementation process. The ability
of Galaxy Constraint Analyzer to deliver comprehensive constraint analysis on 10 million gate designs in a matter
of minutes, combined with a unique set of interactive analysis and debug capabilities, helps designers quickly
identify and fix constraint issues within hours versus days.

To summarize, Galaxy Constraint Analyzer delivers Look-ahead Constraint Analysis technology that makes it a
truly effective constraints analysis tool that boosts designer productivity.

Synopsys, Inc. • 700 East Middlefield Road • Mountain View, CA 94043 • www.synopsys.com

©2010 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of
Synopsys trademarks is available at http://www.synopsys.com/copyright.html. All other names mentioned herein are trademarks or
registered trademarks of their respective owners.

	Boosting Designer Productivity by Using Look-ahead Constraint Analysis Technology

