
WHITE PAPER

synopsys.com

Introduction
Coverage is at the heart of all modern semiconductor verification. There is no maxim more 
fundamental to this process than “if you haven’t exercised it, you haven’t verified it.” Although 
covering a particular aspect of a chip design does not guarantee that all bugs are found—bug 
effect propagation and checker quality are also key factors—it is certainly true that bugs cannot 
possibly be triggered in logic that has not been exercised. Coverage is often regarded as a proxy 
for finding bugs and is therefore a key focus for verification using simulation-based testing.

Although hand-written tests sometimes have a limited role even today, most simulation 
tests use constrained-random stimulus. There is no obvious correlation between these tests 
and the parts of the design verified, so coverage is critical to establishing this link. Although 
verification is never truly done, coverage metrics provide important guidance in determining 
when enough iterations of tests have been run and the design is considered well enough verified 
to be taped out.

Even with the automation benefits of constrained-random testing, convergence to the coverage 
goals is often slow, with diminishing returns as simulation continues. There is still significant 
manual effort involved. The semiconductor industry clearly needs a better, even more automated 
way to “shift left” coverage closure and improve the final coverage results. 

Intelligent Coverage Optimization (ICO) using artificial intelligence and machine learning (AI/ML) 
was included in the Synopsys VCS simulator to address these challenges by enhancing stimuli 
diversity, exposing testbench bugs, and improving coverage. To complement ICO, Synopsys 
VCS recently introduced Synopsys Verification Space Optimization (VSO.ai) to target coverage 
more directly at the fine and coarse-grained levels, also leveraging AI/ML. Synopsys VSO.ai is the 
focus of this whitepaper. 

Authors
Taruna Reddy
Staff Product Marketing 
Manager

Will Chen 
Principal Application Engineer

Badri Gopalan 
Synopsys Scientist

Accelerating Coverage Closure with AI-Based 
Verification Space Optimization 



2

Challenges in Coverage Convergence
The basic concepts behind coverage in simulation seem simple enough. The verification team chooses the structural code coverage 
metrics (line, expression, block, etc.) of interest and automatically adds them to the simulation test runs. The engineers generally 
define additional functional coverage points and groups that represent portions of the design that they want to be sure are exercised. 
They may also define cross-coverage to watch for specific combinations of coverage points. 

The team then defines the constraints that ensure automatically generated stimulus stays within legal bounds, and then kicks off 
simulation runs. As each test iteration generates constrained-random stimulus conforming to the rules, the simulator collects metrics 
for all the forms of coverage included. The team monitors the results and may decide to run more tests or tweak the constraints to 
try to improve the coverage results. At some point, they decide that they have done the best that they can within the schedule and 
resource restrictions of the chip project, and they tape out.

That sounds fairly straightforward, but Figure 1 shows the challenges that arise when this process is used on real-world chip designs. 

The first major challenge is coverage definition, since achieving blanket coverage for a design of any significant size or 
complexity is impossible.

Coverage Closure

Analytics and
Debug

Coverage
Definition

Blanket
Coverage

Impossible

User-Defined
Coverage

Low Reach

Data
Explosion

Unmanageable

Manual
Analysis

Minimal Insight

Infinite State Space

Target

Tests

C
ov

er
ag

e1000s of 
Tests

Unknown ROI

Last Mile
Closure

Labor Intensive

Figure 1: Challenges in the use of coverage in simulation

Since code coverage does not reflect the intended functionality of the design, user-defined coverage also plays an important role. 
However, this is a manual effort that generally spans only a limited percentage of the design’s behavior. Whatever combination of 
structural and functional coverage is included in the simulation tests, trying to close that coverage and achieve metrics matching the 
verification goals is an even bigger challenge. 

The graph in the top center of Figure 1 shows what happens on virtually every project. Initial test runs exercise many parts of the 
design and iterating constrained-random tests tends to improve coverage over time. A typical chip project runs many thousands of 
constrained-random simulation tests, and there is a great deal of repetitive activity in the design. Therefore, the rate of new coverage 
slows dramatically, and the return on investment (ROI) for each additional simulation run is reduced over time. The slowing ROI is the 
second major challenge in coverage closure,

At some point, the curve flattens out, and simulating indefinitely yields little or no improvement. The verification team must decide 
when enough coverage has been achieved to tape out. When this asymptotic convergence occurs, it is never at 100% of the coverage 
metrics. This is one reason why the project goals are set lower. Unfortunately, the flattening of the curve often occurs before the 
goals have been achieved. The verification team must try to figure out what is going on and improve the coverage as much as 
they can within the time and resources available. Since simply running more automated tests does not suffice, significant manual 
effort is required. 



3

This “last mile” of the simulation closure process is the third major challenge, and it is hampered by two factors. First, the amount 
of data collected from the simulation runs is overwhelming. The second issue is trying to analyze this data and determine the root 
cause of a coverage hole: is it an illegal bin for this configuration or a true coverage hole? Manual analysis of massive data sets yields 
minimal insight. The only way to improve the situation is to define better coverage, run fewer tests, converge more quickly to higher 
results, and automate the analysis phase.

Introduction to Synopsys VSO.ai
AI and ML techniques are being brought to bear on hard problems in many industries, and chip development is no exception. Many 
electronic design automation (EDA) tools are starting to use AI/ML successfully to automate tasks, improve schedules, and optimize 
results. Synopsys is the clear EDA industry leader in the application of AI/ML to chip design, verification, implementation, and more. 
Specifically in the domain of simulation-based coverage closure, Synopsys VSO.ai is a unique and powerful solution.

There are many ways that Synopsys VSO.ai can help, and Figure 2 shows how it addresses the challenges illustrated in Figure 1. For 
the coverage definition challenge, Synopsys VSO.ai infers some types of coverage beyond traditional code coverage to complement 
user-specified coverage. ML can learn from experience and intelligently reuse coverage when appropriate. Even during a single 
project, learnings from earlier coverage results can help to improve coverage models. 

Infinite State Space

Coverage Closure

Analytics and
Debug

Coverage
Definition

Pre-Trained
Models

Coverage Reuse

Inferred
Coverage

High Fidelity

Automated
Analysis

Better Insights

AI-Enabled
RCA

Faster RCA

Test
Grading

High ROI First

Targeted
Stimulus

Higher QoR

ML

ML

ML

Target

Tests

Days to Hours

H
igher Q

ualityC
ov

er
ag

e

VSO.ai

Greater Productivity

Faster Closure
H

ig
he

r C
ov

erage

Figure 2: AI/ML improvements for coverage in simulation

The process of running better test simulations to tackle the declining ROI challenge is perhaps the most natural place for ML to 
help. As noted earlier, a lot of the tests are repetitive and yield little or no improvement in the coverage metrics. Manual regression 
optimization is fragile, since evolution of the design, coverage, and constraints over the course of the project may change the 
rankings many times. Trying to incorporate these changes by hand is impractical, but Synopsys VSO.ai works at the coarse-grained 
test level and provides automated, adaptive test optimization that learns as the results change. Running the tests with highest ROI 
first while eliminating redundant tests accelerates coverage closure and saves compute resources. 

Synopsys VSO.ai also works at the fine-grained level within the simulator to improve the test quality of results (QoR) by adapting 
the constrained-random stimulus to better target unexercised coverage points. This not only accelerates coverage closure, but also 
drives convergence to a higher percentage value. 

The last mile closure challenge is addressed by automated, AI-driven analysis of coverage results. Synopsys VSO.ai performs root 
cause analysis (RCA) to determine why specific coverage points are not being reached, for example due to a constraint conflict. If 
Synopsys VSO.ai can resolve the situation itself, it will, and otherwise it presents the verification engineers with actionable results 
such as identifying conflicting constraints.



4

Integration with Synopsys VCS
Effective deployment of AI/ML techniques in EDA solutions requires tight integration with traditional tools. Synopsys VSO.ai is no 
exception, and it achieves its unique advantages through a tight integration with Synopsys VCS. Figure 3 shows the traditional 
manual flow using Synopsys VCS to run tests and collect coverage. 

Tests 
Seeds

Runtime Args
Configs

Sequences
Constraints

Coverage VDB

Synopsys
VCS Simulation

Regression

Synopsys VCS Compilation

Coverage Report

Figure 3: Manual simulation test flow

The design and verification environment (testbench) are compiled, and then the simulations are run. In addition to the constraints, 
there are several other types of information that may be specified by the verification team. These include various configuration 
switches and runtime arguments. As the tests run, coverage metrics are saved in a verification database (VDB). The results can be 
viewed in the form of a coverage report, and databases from multiple tests can be merged to generate a summary report. 

In contrast, Figure 4 shows how this flow is enhanced with the use of Synopsys VSO.ai to automate several key steps. The coverage 
inference step occurs during compilation, complementing structural and user-specified coverage with automatically generated 
coverage. At a fine-grained level, the constraint solver within Synopsys VCS is directed by coverage, so it can more precisely 
generate new tests to hit unreached coverage points. The fact that the solver is deep within the simulator is one reason why tight 
integration is critical.

AI-Based
Regression
Optimizer

Synopsys 
VSO.ai

Test
Optimization

Analytics

Coverage VDB

Simulation

Regression

Compilation

Coverage Report Illegal Coverage
and RCA Report

Coverage
Directed Solver

Figure 4: Simulation test flow with Synopsys VSO.ai



5

Manual test ordering and juggling based on test rankings are replaced by a fully automated flow. At a coarse-grained level, Synopsys 
VSO.ai organizes regressions for maximum ROI, using a minimal set of tests to save runtime and compute resources. It also has 
control of the Synopsys VCS settings and switches to optimize each test run. Likewise, manual analysis of coverage results is 
supplemented by RCA to identify coverage that may be unreachable and report root causes to resolve these situations.

If no higher coverage is required, then VSO.ai yields equivalent coverage results in far less time. In many cases, Synopsys VSO.ai 
uses ML techniques to improve coverage over time, as shown in Figure 5. Every run provides new information to improve constraint 
solving and to optimize the regression tests. Unlike manual approaches, this flow is fully adaptive as results change over the course 
of the chip project. ML can use the history from the current regression run, previous regression runs on the project, and even 
simulations run on similar previous projects.

Regression
iteration 3 with

coverage and test
directed solving

Merged
VDB

Regression
iteration 2 with

coverage and test
directed solving

Merged
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

VDB
VDB

Regression
iteration 1

Merged
VDB

Regression
iteration 5 with

coverage and test
directed solving

Merged
VDB

Regression
iteration 4 with

coverage and test
directed solving

Merged
VDB

Synopsys
VSO.ai DB

Features extracted for ML to 
bias the next regression 

Incremental 
learning

Figure 5: How Synopsys VSO.ai uses ML to improve regressions

Synopsys VSO.ai is also valuable in the development stage when running a subset of the full regression, with or without new changes, 
to ensure verification quality as measured by user or tool defined metrics. The benefit in this case is faster TTR to quickly get to the 

same or similar level of coverage.

Synopsys VSO.ai Results
Synopsys VSO.ai optimizes simulation regressions to achieve the same coverage in less time or to improve coverage as needed. 
For example, one customer achieved at least a 2X reduction in number of regression tests across four IP blocks, as presented at a 
recent Synopsys Users Group (SNUG) event. In another example, shown in Figure 6, VSO.ai was able to reduce the number of tests to 
achieve 100% functional coverage by 3X on the OpenTitan HMAC intellectual property (IP) block.

1
0.00

10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

90.00
100.00

301 601 901 913

Default
VSO.ai

No. of tests

Fu
nc

tio
na

l C
ov

er
ag

e

OpenTitan HMAC

Figure 6: Synopsys VSO.ai results for OpenTitan HMAC



Pub: March 202305/15/23.CS1077133425-VSO.ai-WP.

©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is 
available at http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.

Experience with a wide variety of both IP blocks and full system-on-chip (SoC) designs has shown impressive results. Time to achieve 
coverage goals is reduced 1.5-10X and coverage results are improved by as much as 10% due to regression coverage optimization 
and coverage-directed solving. Typically, 5-20% of the coverage bins are identified as potentially unreachable due to RCA. The value of 
Synopsys VCO.ai is clear and undeniable.

Conclusion
Coverage is still an incomplete proxy for finding bugs, and there is no silver bullet for addressing the challenge of coverage closure. 
As in many other areas of EDA, AI/ML technology brings relief. Synopsys VCS and VSO.ai combine for the industry’s most innovative 
and most complete solution for accelerating regressions and coverage closure.


