
WHITE PAPER

synopsys.com

Background
In the history of semiconductor verification, few advancements have had more impact than the
introduction of regressions for simulation test suites. At one time, the concept of verification barely
existed. Designers were expected to do some ad hoc testing of their designs, typically by manually
applying some inputs, running a short simulation, and looking at the resulting waveforms. As
designs grew larger and more complex, it became important to formalize this process. Verification
engineering emerged as a distinct discipline from design. The verification engineers hand-wrote
scripted tests for specific features of the design, ran them in simulation, and debugged the failures.
They listed the features in a verification plan and checked them off as they were tested. When all
features were checked, the chip was taped out.

Regressions entered the picture because running each test once was not enough. The
verification team found that tests that had previously passed frequently failed when rerun later
in the project. There were several causes for this effect. To accelerate the schedule and shorten
time to market (TTM), the design and verification efforts overlapped. Portions of the design
added later often changed the behavior of portions previously tested. Tests also failed when
fixes for one design bug introduced new bugs or caused ripple effects. Refining the design as it
was being implemented (synthesized, placed, and routed) or outfitted with design for test (DFT)
features also tended to create new bugs. Finally, the chip specification itself changed many
times throughout the course of the project, causing some tests to be outdated or leading the
design and verification teams to get out of sync.

For all these reasons, verification engineers collected all passing tests into a test suite and
ran them in regression runs on a regular basis, often nightly when the available simulation and
compute resources made that possible. This remains the case today. Constrained random
stimulus generation has automated and reduced the manual effort in test creation, but the tests
are still collected into suites and simulated in regressions. For much of a project, at least a few
previously passing tests fail in every regression run. Sometimes every test fails, especially when
major changes are made to the verification environment or testbench. Debugging these failures
is largely a manual effort, with costly impact on resources and TTM. This white paper presents
a novel solution: the use of artificial intelligence (AI) and machine learning (ML) techniques to
automate the debug of regression results.

Author
Rob van Blommestein
Product Marketing

Using Machine Learning to Automate Debug
of Simulation Regression Results

http://synopsys.com

2

Challenges for Regression Debug
As they write new tests or modify constraints to generate new random tests, verification engineers expect a certain amount of manual
debug effort. Any design has lots of bugs to be found and fixed, so it is normal for the first run of many new tests to fail because they
have uncovered design bugs. Of course, verification engineers make mistakes just as designers do, and so many tests fail because
of errors in the tests or testbench. Figuring out the causes of the failures and fixing them requires manual work, but it is precisely
what verification is all about. The mindset of finding this a fun challenge and cleverly diagnosing bugs is part of what defines a
verification engineer.

Failures in regression runs are a different matter entirely. New tests are generally debugged in local “sandboxes” and added to the
project regression suite only after they pass. Ideally, once tests have been included in regressions the verification team is done with
them. This never happens, but the team hopes that regression failures are infrequent since they interrupt progress on creating new
tests and are much less fun to debug. In some ways, every regression failure is a disappointment since it represents a step back in
the project timeline and requires revisiting parts of the verification plan previously considered done. It’s discouraging for verification
engineers to check the results of an overnight regression run and see failures.

Unfortunately, for all the reasons mentioned earlier, regression failures are common. For much of a project, they are more the rule
than the exception. As shown Figure 1, regression failure debug is usually a manual process. After the latest changes to the design
and verification code are checked in, the regression is run, and some tests fail. Hundreds or thousands of failing tests are not
uncommon, presenting a daunting task to the verification engineers. They start by manually examining the simulation log files and
analyzing what went wrong. It is often possible to categorize the failures and sort them into “bins” based on the type of error reported.
The bins then need to be triaged to determine whether the problem is more likely to be in the design or the testbench, and which
blocks or components are the primary suspects.

Check-In

RegressionFix

1000s of
Failures

Root Cause
Analysis

Analysis and
BinningError Triage

Figure 1: Regression testing loop with manual steps

At this point, debugging passes to the verification engineers or designers who own the suspect code. They perform root cause
analysis (RCA) to try to pinpoint the actual bug triggering the test failure. This process is manual and iterative for all the logs from
all the failing regression tests. It consumes valuable project time, ties up expensive resources, and is error prone due to the manual
nature of the analysis and triage. Incorrect binning means that multiple failures due to the same bug are sometimes triaged multiple
times rather than just once. Manual triage means that a failure is frequently passed on to several design or verification engineers
before the root cause is finally found and fixed. Chip development teams have been clamoring for a better way to manage and
debug regressions.

3

Machine Learning to the Rescue
Only recently has technology been available to automatically analyze, bin, triage, probe, and discover the root causes of regression
failures. ML is the key enabler for these capabilities, and it’s not hard to see why. Manual regression debug relies heavily on the
experience of the verification engineers. Over time, they develop a sense of what types of failures occur and how they can be binned
appropriately. Years of triage help them more accurately determine the most likely sources for the failures and to assign them to the
right design and verification engineers for root cause analysis and fixes. Given the enormous amount of information gleaned from
thousands of regression runs on a project, ML can automatically gain an AI version of this experience and apply it for faster and more
accurate debug. Figure 2 shows how three stages of the regression loop are accelerated and automated with ML techniques.

Check-In

RegressionFix

1000s of
Failures

Automated Root
Cause Analysis

Automated
Analysis and

Binning
Automated
Error Triage

Figure 2: Regression testing loop with ML assistance

A solution enabling this much more efficient loop is available today. The Regression Debug Automation (RDA) capabilities in
Synopsys Verdi® Automated Debug System automatically discover the root causes of regression failures. RDA classifies and analyzes
raw regression failures using ML and identifies root causes of failures in the design and testbench. RDA focuses on automating
the regression log analysis, binning, triage, and root cause analysis to reduce the tedious and manual effort associated with the
typical regression flow. RDA automation helps the users find, understand, and fix the bugs much faster than previously done before,
improving the overall debug effort by 2X or more.The overall RDA flow is shown in Figure 3.

Regression Binning
and Failure Triage
• Categorize failures by
 extracted characteristics

RCA Report
• Guides design debugging
• Value difference tracing

End User

End User

Debug Facilitator
• Reverse debug
• Transaction-enabled debugging

Bins of Design Bugs

Bins of Testbench Bugs

RDA

Regression
Failure
Cases

Figure 3: Overall Verdi RDA flow

4

The traditional manual steps of binning and triage on the regression failures are automated, running after the regression, usually
overnight. Thus, the debug environment is set up at night without any need for user action or intervention. Automated RCA is
performed on any bugs traced to the design, and reports provided to the designers make it much easier to determine the exact cause
of the failure. Reporting which signals had different values between passing and failing test runs focuses the debug effort on the right
part of the design. For bugs in the testbench code, transaction-aware debug and the ability to move both forward and backward in the
simulation timeline makes it much easier for the verification team to understand and resolve the source of test failures.

Components of the Solution
Verdi RDA incorporates numerous powerful techniques and technologies to automate and accelerate regression debug. The process
starts by collecting data from the regression run, including simulation log files, value change dump (FSDB) files, and compiled
simulation databases with the design and Universal Verification Methodology (UVM) testbenches. The collected data feeds into the
regression binning application, which analyzes the log files for failures and sorts those failures into like categories. This step uses
unsupervised ML to mine relationships among the verification log failures and bin the results. It takes advantage of UVM-based
messaging, user-defined rules, verification intellectual property (VIP) log binning, and CPU-based design (instruction set) binning.
It is simple to set up and thus easy to use. This process has been shown to be 90% accurate and reduces the overall triage time.
As shown in Figure 4, the results are brought into Verdi’s RCA Manager for review by the design and verification engineers.

RCA Manager

Simulation Logs

RDA
 Regression Binning

Figure 4: ML-based regression binning in Verdi RDA

After binning, RDA performs failure analysis and triage. It takes the bins of failures and determines whether the issues are from the
design under test (DUT) or the simulation testbench based on the characteristics of the failures. One of the reasons that Verdi RDA
is so effective is its application of multiple technologies to find the root cause of failures in both the design and the testbench. The
DUTRCA approach identifies failures from the log files and then compares the values of signals from passing and failing tests to
isolate failure points that differ near the test errors. DUTRCA uses time-based roll back mechanisms and its TraceDiff capability to
automatically narrow down the cause of the error in the DUT. As shown in Figure 5, Verdi provides visualization to show the RCA path
along with the signal value changes in the design.

5

Stimulus

Same Seed
Analyze and Trace
Waveform/Design
Differences to Find

Root Cause

Stimulus

Port 1

Port 2
DUT

Reference

Port n

Port 1

Port 2

Port n

Port 1

Port 2
DUT

Latest Change

Port n

Port 1

Port 2

Port n

Checker (PASS)

Checker (FAIL)

Design Difference

Different Result

Figure 5: Comparing signal values in DUTRCA

To root cause testbench failures, Debug Facilitator automatically collects debug data for each failure bin. It then facilitates the debug
with Protocol Analyzer, showing transactions and associated details along with the reverse debug capability to view the source of
the issues back in time. As shown in Figure 6, failing tests are automatically rerun in simulation with reverse debug and other key
debug features enabled. Debug Facilitator automatically captures checkpoints during the simulation, essentially the full state of the
environment at the time of failure. In addition to that, other important checkpoints are captured. These checkpoints can be used once
the RCA results are brought into Verdi interactive mode. Verdi’s debug features, including reverse debug, enable quick analysis of the
identified failure root causes in the testbench.

Launch Regression

Simulation

Test Failure?

Debug Rerun

Yes

Yes

Waves for Debug

Verdi Interactive

Restore
Checkpoint

Save
Checkpoints

to Disk

UVM Error
(Debug Point Auto-Created)

Rerun
Candidate?

Reverse Debug

Figure 6: Using checkpoints in Verdi

6

Verdi RDA includes valuable features to reduce the number of failures related to unknown (X) values that must be analyzed by
users. This is important because Xs are notoriously difficult to debug. They typically cover many cycles and levels of logic, and
they result in many fanout cones of logic with a single root cause. XRCA is a technology that analyzes single and multiple X paths
to the root causes. If this results in multiple paths being sourced from a single root cause, those paths are grouped into a single
group. As shown in Figure 7, these results are captured in a report that can be brought into Verdi for analysis and understanding to
quickly fix the issues. XRCA automatically scans the X signals in FSDB files and can handle large numbers of such signals to reduce
user debug time.

Configuration and settings
can be checked here

Root cause of following
3 X signals

Root cause of following
12 X signals

Clicking any result will show
the path in Temporal Flow View

Figure 7: Reducing failures due to unknowns in XRCA

XRCA also addresses X-pessimism, another issue that makes debugging unknown-related failures challenging. Simulation assumes
that any unknown inputs to a gate should be propagated to its output. This can be pessimistic, propagating “false” Xs throughout
the design. The circuit shown in Figure 8 is a simple example. A signal and its complement are both fed into an “or” gate. If the signal
is unknown in simulation, an X value is propagated to the output of the gate. However, since the inputs to the “or” function can only
be 01 or 10, its output will always be 1. Eliminating such a failure from the debug effort is highly beneficial. XRCA includes a formal
engine that filters out those types of scenarios from the real Xs. It reports both in separate sections so all can be reviewed in Verdi
but performs full RCA only on the real Xs to increase the throughput of the analysis.

©2022 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available
at synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
08/30/22.CS933416539-SRG-Verdi-RDA-WP. Pub: July 2022

X-pessimism
engine

X / X
X / X

X / 1 O

Sim value / Real value X / X

X-pessimism

i

Update
X-pessimism

Figure 8: Reducing X-pessimism with XRCA

Summary
Regression Debug Automation in Verdi provides the industry’s best solution to the challenges of debugging the results from large
simulation regression runs. Automated regression binning requires minimal setup and frees the verification team from the manual
task of examining hundreds of thousands of failures. Automated triage separates design and testbench failures and root cause
analysis identifies the most likely source of bugs. Debug Facilitator automatically reruns failing tests and provides advanced
visualization capabilities to find and fix bugs. Verdi RDA saves significant time and effort for every failing test that is debugged while
greatly reducing the number of such tests. The result maximizes regression utilization, focuses manual effort on true debug rather
than automatable tasks, reduces the turnaround time (TAT) in the debug process, and cuts the overall debug regression effort on a
chip project in half.

https://www.synopsys.com/company/legal/trademarks-brands.html

