
www.eecatalog.com/fpga

Engineers’ Guide to
FPGA & PLD Solutions
Automotive Electronics Fuels Need for
High-Reliability Devices

Market Leader Sponsor Gold Sponsors

FPGAs: Good Company in
Consumer Mobile Devices Seeking
Differentiation—Fast

Practical Tips For External
Logic Analyzer FPGA Debug

www.eecatalog.com/fpga 15

SPECIAL FEATURE

Editor’s note: Our thanks to Troy Scott, product marketing

manager at Synopsys, who recently offered his insights on

a number of questions. Scott is responsible for FPGA-based

prototyping software tools at Synopsys. He has 20 years of

experience in the EDA and semiconductor industries. His

background includes HDL synthesis and simulation, SoC

prototyping and IP evaluation and marketing.

EECatalog: What practices do you recommend for

capitalizing on FPGAs’ ability to address the challenges

posed by concurrent hardware/software design?

Troy Scott, Synopsys: From an ASIC

design perspective FPGAs are absolutely

applied to help create a more parallel design

process for hardware and software. High-

performance FPGA-based prototypes make

it feasible to boot an OS, develop drivers

and run a software stack. And, perhaps more important,

do so with a minimum number of high-capacity FPGAs

to keep prototype cost as low as possible, which is a very

important consideration if the prototype will be duplicated

throughout the organization.

Best practices to maximize the prototype ROI typically

result from collaboration between ASIC designers, the

FPGA-based prototyping specialists and the software

teams who use the prototype. “Over-the-wall” RTL drops

are a recipe for failure and schedule delays. Design For

Prototyping (DFP) RTL coding standards maximize

prototype performance and speed the schedule at which

it can be brought-up. At the deployment phase the most

efficient prototyping teams will work closely with and

treat the software team as the internal customer. Tracking

software alongside RTL changes will minimize confusion as

the system is integrated. Some software routines may need

to account for slower operation of the prototype versus

ASIC silicon. Internal probe points relevant to the software

team may need to be designed in to help during the debug

phase. Rapid reset cycles designed into the prototype help

improve turnaround time. All of these examples require

close collaboration between the prototyping team and the

embedded software development team.

EECatalog: Your thoughts on some of the challenges

to FPGA-based prototyping, beginning with design

partitioning?

Scott, Synopsys: To achieve both rapid time to solution

and highest performance you need super-fast partition

software and a platform that can be tailored to the SoC

needs. One example of this is what Synopsys calls the

abstract partition flow with ProtoCompiler and HAPS-70.

The combination of ProtoCompiler and HAPS-70 enables

prototypers to quickly create an abstracted interconnect

architecture representation, generate a partition solution,

then incrementally customize the partition and the

hardware based on the needs of the SoC.

A smart partition automation tool allows the prototyper

to create an abstract representation of the interconnect

between FPGAs. At this level of abstraction, there are no

fixed traces between FPGAs nor exact connections, but

rather a representation of possible I/O interconnections.

From this vantage point, the prototyper can very quickly

see the expected FPGA utilization and secondly, and most

important, the signal-to-multiplexing ratio. A prototyping

rule of thumb is: the higher the mux ratio the lower the

system performance, and it’s this performance that is the

gating factor of overall performance in a prototype. Quick

identification of bottlenecks and where to apply more

physical I/O between FPGAs enables the prototyper to not

only design an ideal partition scheme, but also accomplish

the task quickly.

EECatalog: Long bring-up is another challenge.

Scott, Synopsys: The challenge of how to accelerate

prototype bring-up remains a focus for commercial vendors

of FPGA-based prototypes. FPGA logic synthesis tailored

for the prototyping task, partitioning and sophisticated

signal sharing schemes to maximize performance will

help shorten project schedules. But even with strong

A Few Questions on…FPGA-based
Prototyping Software Tools
Did we say “a few”? Who’s counting? We just know the topic range here spans
everything from what designers ready to work on PCIe 4.0 projects should
know to SoCs and design partitioning to whether FPGAs’ reputation for being
difficult to program is warranted.

By Anne Fisher, Managing Editor

16 Engineers’ Guide to FPGA and PLD Solutions 2015

SPECIAL FEATURE

product roadmaps and innovations in prototyping EDA

software, the most successful design teams have embraced

Design for Prototyping (DFP) best practices throughout

the ASIC development process. DFP adoption may require

a culture change as profound to development teams as

was the industry shift from an emphasis on ASIC design

productivity to ASIC verification productivity. In the next

two years those ASIC design teams that anticipate design

best practices for both ASIC and FPGA targets will benefit

most from FPGA-based prototyping methods.

EECatalog: What’s the latest on avoiding debugging

complications?

Scott, Synopsys: The reason debug of an FPGA-based

prototype is complicated is due to at least two conditions

prototyping specialists face. One, design modifications

to some extent are required to fit into the architectural

constraints of a multi-FPGA system where ASIC signal

interconnect, reset and clocking, memory blocks, ASIC I/

Os, DFT circuits, etc. may require careful replacement

and budgeting by prototyping specialists. Functional

equivalence checks either through a simulation regimen or

formal methods help to confirm that these changes have

not changed the logic of the initial RTL drop. Innovations

in prototyping automation tools help accelerate this

process with schemes to model these changes.

The second reason is that once the prototyping system is

operational the very nature of an FPGA-based prototype

may expose flaws that simulation and emulation will not

expose during the RTL and IP verification phases. Because

the prototype is running at multi-megahertz it makes

software-driven test and real-world interface testing

feasible. These tests are going to uncover problems, or

perhaps better stated as “incompatibilities” that require

driver and/or RTL changes. In 2015 debugging features

tailored for prototyping systems provide high-capacity

storage options to allow for long periods of evaluation

with schemes to adjust instrumentation that minimizes

disruption to the prototype implementation.

Success in prototyping is largely measured by how soon

an operational prototype can be deployed. The faster the

debug phase can be accomplished, the lower it will be on

the prototyping community’s list of priorities.

EECatalog: What are the top 5 things designers ready to

work on the architecture of PCIe 4.0 projects should know?

Scott, Synopsys:

1. Keep your eye on the ball! Or in this case, the

specification. The PCIe 4.0 specification draft 0.3

is out, draft 0.5 is expected around the end of 2014,

and while most of the expected changes are electrical,

there are some protocol changes too. Make sure your

FPGA vendor’s SERDES is going to be able to meet

PCIe 4.0 electrical requirements—many are extremely

configurable, but the devil may be in the details as the

spec finalizes.

2. Go big or go home! In order to keep to FPGA-friendly

clock frequencies, datapaths will get very wide. That

means things like 128-bit SERDES interfaces, internal

datapaths, etc. Make sure your FPGAs have the capacity

to handle the increased routing resources, which come

with such large internal busses.

3. Feed the beast! Probably obvious, but if you’re going

to feed PCIe 4.0’s 16GT/s data rate, you’ll need more

bandwidth in whatever your applications are doing.

4. Bring friends! Plan for early interoperability testing

with other implementers. Even though FPGAs make

logic changes “easy” it will be important to make sure

your application will work with upcoming chipsets

and other PCIe 4.0 devices until PCI-SIG compliance

testing becomes available. Keep an eye out for early

opportunities to participate in PCI-SIG “FYI” testing.

5. Never walk alone! Work with an IP vendor who

is committed to closely tracking the PCIe 4.0

specification, is involved in the development of both

the specification itself and the associated compliance

tests and has PCIe 4.0 code available.

EECatalog: Name 5 factors that have to be involved

in winning business in a case where the customer had

previously designed FPGA boards in-house for an ultra-low

latency application, e.g., time-sensitive financial trades.

Scott, Synopsys:

1. Shorter lead time for the prototype availability

2. Superior prototype flexibility across validation

scenarios

3. Superior quality compared to low-volume system

builds

4. Software tools tailored for system with a deep feature

set for bring-up automation and debug

5. Support for advanced prototyping scenarios via

workstation connectivity

EECatalog: As FPGAs get used more frequently as

co-processors, accelerators, or offload engines, what are

the design challenges of writing optimized code to take

advantage of this/these capability (ies)?

www.eecatalog.com/fpga 17

SPECIAL FEATURE

Scott, Synopsys: FPGAs are becoming more powerful

and power efficient over time. This is enabling more

widespread use in new applications. In addition FPGAs

bring to the table a very high level of processing power that

can significantly speed up algorithms. In the past FPGA

designers would have needed to work at optimizing their

code for a specific device. However, today, synthesis tools

are on the market that enable techniques developers can

utilize to gain a high level of optimization for area and

performance in co-processing/acceleration applications

EECatalog: Please comment on OpenCL and other high-

level languages applied to FPGA designs.

Scott, Synopsys: Over the years there have been many

tools developed to help make the transition from higher-

level languages to the lower-level RTL, but there still

remains a need for some FPGA understanding. OpenCL has

been a standard in the industry for a while, and recently

both Altera and Xilinx have made announcements around

OpenCL. The goal is to abstract away the traditional FPGA

development flows and lower the barrier to entry for the

masses. It is a difficult question to answer so broadly, but

FPGAs are already being adopted more widely and in part

due to the higher-level languages and abstraction they

provide.

Anne Fisher is managing editor of EECatalog.

com. Her experience includes being managing

editor, Communications Group, at OpenSystems

Media, where she had the opportunity to cover a

wide range of embedded solutions in the PICMG

ecosystem as well as other technologies. Anne

enjoys bringing embedded designers and developers solutions to

technology challenges as described by their peers as well as insight

and analysis from industry leaders. She can be reached at afisher@

extensionmedia.com

For the Advanced SoC Design
Community

ChipDesignMag.com

 News

 Technology Trends

 Blogs

 System Design
Engineering Online
Community

 Semiconductor
 Manufacturing and
 Design Community

 Videos

 Expert Insight

 Technical Papers

 RF & Microwave
Systems

 Resource Guides

 Valuable Newsletters

