Simulation of Fault Tolerant Power Supply Networks for ADAS Vehicles with SaberRD
Simulation of Fault Tolerant Power Supply Networks

Authors

Marco Beckmann
Robert Bosch GmbH, Leonberg, Germany
Automotive Electronics – Body Electronics
System and Architecture Engineering

⇒ System Engineering Power Supply Networks
⇒ Coordination Modeling & Simulation

Dr. Jürgen Barthlott
Robert Bosch GmbH, Leonberg, Germany
Automotive Electronics – Body Electronics
System and Architecture Engineering

⇒ System Engineering Power Supply Networks
⇒ Team Manager
Fault Example: Alternator Breakdown

Situation:

- Alternator fails during running automated highway pilot

Question:

- Can the vehicle get automated to safe state?

Simulations:

- Varying electric loads
- Different dynamic loads

Analysis & result:

- Voltage level falls below critical threshold
- Functional degrading of safety-relevant consumers → Scenario is not achievable if this fault happens

Goal / Safe Stop Scenario:

- Stop at emergency lane
Simulation of Fault Tolerant Power Supply Networks

Scenario Variations

Subnet 1:

<table>
<thead>
<tr>
<th>Load</th>
<th>Sc.1</th>
<th>Sc.2</th>
<th>Sc.3</th>
<th>Sc.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>fail</td>
</tr>
<tr>
<td>High</td>
<td>ok</td>
<td>ok</td>
<td>fail</td>
<td>fail</td>
</tr>
</tbody>
</table>

Subnet 2:

<table>
<thead>
<tr>
<th>Load</th>
<th>Sc.1</th>
<th>Sc.2</th>
<th>Sc.3</th>
<th>Sc.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>ok</td>
<td>ok</td>
<td>ok</td>
<td>fail</td>
</tr>
<tr>
<td>High</td>
<td>ok</td>
<td>ok</td>
<td>fail</td>
<td>fail</td>
</tr>
</tbody>
</table>
Simulation of Fault Tolerant Power Supply Networks

Using SaberRD

Fault Tool:
- Definition of single point faults and multiple point faults

Signal Analyzer:
- Validation of simulations

Experiment Analyzer:
- Variation of premises
- Variation of fault sets
- Automated analysis of the signal waveforms

Experiment Report:
- Review of the results
- Export to Excel
Simulation of Fault Tolerant Power Supply Networks

Complexity

- 3 load scenarios
- 2 ambient temperatures

- 10 power network components
 - 27 single point faults
 - 729 dual point faults

- 5000 simulations, approx. 7d calculation time

- 130 tests per simulation:
 - Extrema
 - Critical thresholds
 - Gradients

Fault Analysis Toolchain for Product Development

- Failure Definition
- Fault Tree Analysis
- Single + Mul. Faults Def.
- Saber Simulation
- Waveform Analysis
- Effect Validation
- Sensitivity Analysis
- Component Specifications

Automotive Electronics

AE-BE/EKE-Powernet | 4/7/2015 | © Robert Bosch GmbH 2016. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Simulation of Fault Tolerant Power Supply Networks

Architecture Design – Co-Simulation

Operating strategy + components control

Fault injection

Wiring harness

MATLAB
Electrical Energy Management

SABER
Powernet Model

Co-Simulation

Nominal + Fault Analysis

Voltage Stability

Charge Balance

Operating strategy + components control

Fault injection

Wiring harness

MATLAB
Electrical Energy Management

SABER
Powernet Model

Co-Simulation

Nominal + Fault Analysis

Voltage Stability

Charge Balance

Operating strategy + components control

Fault injection

Wiring harness

MATLAB
Electrical Energy Management

SABER
Powernet Model

Co-Simulation

Nominal + Fault Analysis

Voltage Stability

Charge Balance
Simulation of Fault Tolerant Power Supply Networks

Conclusion

- Developing components for ADAS vehicles needs profound understanding of cause-effect relationships in power supply networks
- Classic method for analyzing fault effects are experiments on test vehicles, this would be
 - Expensive, time-consuming: Thousands of faults scenarios needs do be analyzed
 - Harmful: E.g. short cuts, component break-downs can cause dangerous effects
- Using simulations instead enables development regarding Functional Safety in an cost-efficient and flexible way
- Established toolchain with SaberRD:
 - Automatic execution of a very large number of fault simulations
 - Automatic analysis of signal waveforms
 - Exported report as input for succeeding process steps
- Effort: Robust simulation model must be developed for rated and failure operation mode
- Simulation allows:
 - Exploring many more failure scenarios that would have otherwise gone untested
 - Examining of current concepts and research on future concepts