Virtual ECUs for Developing Automotive Transmission Software

Dr. Thomas Liebezeit, Jakob Bräuer, Roland Serway (IAV)
Dr. Andreas Junghanns (QTronic)
Innovative Fahrzeug-Getriebe und Hybrid & Elektro-Antriebe, Dezember 2011
Virtual ECUs for Automotive Software

Agenda

- Motivation
- Software-in-the-Loop setup
- Debugging
- Experience
- Conclusion
Virtual ECUs for Automotive Software
Motivation and objective

• **Motivation**
 – Series Transmission Software development
 • Different software variants
 – Functional behaviour testing
 • dSpace Hardware-in-the-Loop (HiL) systems and test vehicles
 • Limited possibilities for troubleshooting and analysis of software
 • Fully utilized HiL systems

• **Objective**
 – Debugging of series transmission function software
Virtual ECUs for Automotive Software
IAV’s boundary conditions

• Usage of Software-in-the-Loop
 – Runs completely on Developer PC
 – Enables convenient debugging

• Full-featured debugging
 – Break points (fix, conditional)
 – Reading and changing of run-time variables

• No code changes allowed

• Full process control by IAV

• All-time deployable by developer

• Reuse standard data sources (A2L, PAR, DBC)

• Consistency over X-in-the-Loop (SiL, HiL)
Virtual ECUs for Automotive Software
Silver

- Silver from QTronic GmbH
 - Software-in-the-Loop (SiL) simulation environment
 - All relevant automotive standard formats supported
 - Allows debugging via Microsoft Visual Studio
 - IAV has already experience with Silver

![Diagram of Silver features]

- **Configurable GUI**
- **Debugging**
 - MS Visual Studio
 - PDB
- **Data Handling**
 - MDF
 - CSV
 - CANape/INCA
- **Test and Adaptation**
- **Python Scripting**

Virtual ECU
- A2L
- PAR
- DCM
- HEX
- Control software tasks
- Fix-point C code

Environment Model
- As DLL, S-Function, ...
- MATLAB/Simulink
- Modelica with Dymola/SimulationX

Rapid Prototyping
- Via CAN
Virtual ECUs for Automotive Software

Agenda

- Motivation
- SiL setup
- Debugging
- Experience
- Conclusion
Virtual ECUs for Automotive Software
SiL Setup: Transmission Software

- **Transmission software**
 - C-Code (Hand coded, auto code from TargetLink)
 - Mostly accessible as code, some as LIB
 - Interface to Virtual ECU
 - ECU BIOS calls
 - get/set functions for sensor, actuator, CAN data
 - SiL task
 - Compile for PC processor (x86, Microsoft C Compiler)
 - Current developer code
Virtual ECUs for Automotive Software
SiL Setup: Virtual ECU

• **Virtual ECU**
 – Hardware and software
 • IO interface to Silver-API
 – Input and output signals
 – Virtual CAN
 • Timing
 – Task slices
 • BIOS functionality
 • Non-volatile memory
 – SiL task
 • Write C-Code using Silver Basis Software (SBS)
 • New: Virtual CAN
Virtual ECUs for Automotive Software
SiL Setup: Environment Model

- **Environment model**
 - Longitudinal vehicle dynamics and CAN rest bus
 - SiL task
 - Reuse existing HiL model
 - Implemented in Simulink
 - Adjust Timing
 - Switch block set to Silver block library (IO, CAN)
 - Compile for PC processor (x86)
 - Silver simbuild tool
 - Real Time Workshop
 - Microsoft C Compiler
 - Rollout via version control system
Virtual ECUs for Automotive Software

SiL Setup: Silver Configuration

- **Silver configuration**
 - Graphical user interface
 - Start/stop simulation
 - Interact with simulation (gear lever, accelerator and brake pedal)
 - Display and change elementary information
 - Software: A2L measurement signals and parameters
 - Model: Status information
 - PAR file flashing
 - Access A2L
 - SiL task
 - Setup new experiment
Virtual ECUs for Automotive Software

Agenda

- Motivation
- SiL setup
- Debugging
- Experience
- Conclusion
Virtual ECUs for Automotive Software Debugging

- **Characteristics**
 - SiL setup (as described before) with current developer software
 - Stops whole simulation (incl. environment model)
 - Configuration is easily adaptable

- **Debugging focus**
 - Situations that are difficult to produce
 - Timing errors
 - Re-simulation of vehicle measurements
 - Fault simulation
 - „Living code“
Virtual ECUs for Automotive Software
Debugging

- **Silver Signal debugging**
 - Stop Silver simulation at arbitrary time
 - Analyse signals (with history even new added)

- **Code debugging**
 - Open QTronic Silver with correct experiment
 - Open Microsoft Visual Studio
 - Open C file
 - Set break point(-s)
 - Attach to Silver process
 - Start Simulation
 - Debug
Virtual ECUs for Automotive Software

Agenda

- Motivation
- SiL setup
- Debugging
- Experience
- Conclusion
Virtual ECUs for Automotive Software
Experience: Build up and maintenance

- IAV had already experience with Silver usage
- First build up of SiL Setup
 - Work of IAV (with help from QTronic)
 - Effort: 6 MM
- Maintaining/ updating effort
 - Keep running since 1 year
 - Tasks
 - Adapting to function software changes (frequently)
 - Model updating (less frequently)
 - Change to new Silver API 2.4:
 - Better access to model data
 - Use build in CAN
 - Process improvements
 - Effort: ca. ½ developer
Virtual ECUs for Automotive Software Experience

• Added value from debugging
 – New quality of debugging
 • Step through code
 • Full access to all variables
 • Full history of signals in Silver
 – Analysis times reduced
 – Faster change-analysis-change cycles

• User acceptance
 – Growing acceptance
 – Advantages are fully accepted
 – High availability requested
Virtual ECUs for Automotive Software

Agenda

- Motivation
- SiL setup
- Debugging
- Experience
- Conclusion
Virtual ECUs for Automotive Software

Conclusion

• Silver enables build up of automotive SiL simulations easily
• Debugging at SiL level is successful
• SiL will be established soon
• Additional use cases planned for SiL simulation
Thank you!

Dr. Thomas Liebezeit
IAV GmbH
Ingenieurgesellschaft Auto und Verkehr
Carnotstraße 1, 10587 Berlin
Telefon: +49 30 39978-9021
thomas.liebezeit@iav.de