
QuantumATK is a complete and fully integrated software suite for atomic-scale modeling of semiconductors, professionally engineered using state-of-the-art scientific and software-engineering methods. It combines the power of a Python scripting engine with the ease-of-use provided by an intuitive NanoLab graphical user interface (GUI). All simulation engines share a common infrastructure for analysis, ion dynamics, and parallel performance techniques. This datasheet describes QuantumATK simulation engines. You can download another datasheet on the NanoLab GUI.

Core Features of QuantumATK

NEGF Method for Nanoscale Device and Transport Simulations

Non-Equilibrium Green's function (NEGF) module works with DFT-LCAO, Semiempirical and ForceField Modules (see next page)

- ▶ Types of Systems: Nanoelectronic Devices & Interfaces (2-Probe), Surfaces (1-Probe, beyond slab approximation)
- ► Include:
 - An effective doping scheme to simulate doped semiconductors
 - Metallic gate electrodes, dielectric screening regions and implicit solvent models
 - Surface, defect, interface, and grain boundary scattering effects
 - Electron-phonon coupling (EPC) effects (MD-Landauer, STD-Landauer, and inelastic transmission methods)
 - Relaxation of device geometries using BRR and NEGF methods w/wo constraints
 - Multilevel parallelism up to 1000s of cores
 - Options to balance performance vs. memory usage

► Calculate:

- Electrical characteristics, such as I-V curves, on/off ratio, subthreshold slope, drain-source saturation voltage, drain-induced barrier lowering, transconductance
- Transmission spectrum, eigenvalues, eigenchannels, device density of states (DOS), etc.
- Schottky barriers and interface resistance (e.g. for metal-semiconductor contacts, interfaces in interconnect stacks)
- Phonon-limited mobility and resistivity of materials (e.g. for interconnects and transistor channels applications)
- Tunnel magnetoresistance ratio, spin-polarized tunneling current, and bias-dependent spin-transfer torque for material stacks that comprise the magnetic tunnel junctions in the STT-RAM bit cells
- Photocurrent and open circuit voltage for solar-cell devices and LEDs
- Band-alignment, Schottky barriers, and work functions for thin film/surface heterostructures
- Electronic surface states in external electric fields

Core Features of QuantumATK · DFT-LCAO: Simulation engine for density functional theory (DFT) using pseudo-potentials and linear **DFT-PlaneWave** combinations of atomic orbitals (LCAO) basis sets. SemiEmpirica 103-104 Atoms • DFT-PlaneWave: Simulation engine for DFT using pseudo-potentials and plane-wave basis sets. orceField • SemiEmpirical: Semi-empirical simulation engine using DFTB, extended Hückel, Slater-Koster, and other tight-binding models. • ForceField: Simulation engine for atomic-scale simulations (e.g. molecular dynamics (MD)) using classical potentials. ▶ Types of Systems: Molecules, crystals, polycrystals, nanostructures, nanoparticles, alloys Works with NEGF method for simulations of nanoelectronic devices, interfaces, surfaces, solar-cells ▶ Use: More than 300 LDA/GGA/MetaGGA DFT functionals ► Hybrid functionals (HSE06, B3LYP, B3LYP5, PBE0) ▶ Van der Waals models: DFT-D2 and DFT-D3 ► Hubbard U term for LDA and GGA ▶ Methods for accurate band gap calculations of semiconductors and insulators ► Norm-conserving Troullier-Martins PPs (FHI, SG15/PseudoDojo) ► Projector-augmented wave (PAW) PP method Predefined numerical atomic orbital basis sets for different accuracy levels ▶ Plane wave basis sets with automatic default cut-offs > Spin settings: unpolarized, polarized, noncolinear, noncollinear spin-orbit ▶ Built-in Slater-Koster models for group IV and III-V semiconductors, extended Hückel model with over 300 basis sets and Tight-Binding models for strained systems More than 300 empirical classical potentials included, Python interface for adding your own or literature potential, support for custom combination of potentials ▶ Machine-Learned Force Fields (Moment Tensor Potentials) where no conventional potential exists to describe complex materials accurately; automated training workflow to create & improve MTPs ► Gates, dielectric regions or implicit solvent models in devices or periodic structures Perform: Calculations of band structure, fat band structure, (P)DOS, optical properties, and many more Spintronic properties, e.g. magnetic anisotropy energy, Heisenberg exchange, Gilbert damping ▶ Boltzmann transport calculations of conductivity/mobility tensor, Hall coefficient and Hall conductivity tensor, Seebeck coefficient and ZT including electron-phonon coupling (EPC) ► Geometry and unit cell optimization using LBFGS and FIRE methods ▶ Molecular dynamics (NPT, NVT, NVE, ..) simulations for studying atom dynamics, phonon and thermal transport, and physical processes (e.g. deposition, etching, sputtering) ▶ Time-stamped force-bias Monte Carlo simulations as an alternative to MD for long time-scale equilibration, deposition, amorphization, diffusion, sampling of rare events Nudged elastic band (NEB) for reaction path optimization (e.g. defect migration paths & energies) Phonon modes (include EPC effects), phonon bandstructure, DOS, and thermal transport ▶ Benefit from: Multilevel parallelism (threading + MPI) up to 1000s of cores. Parallelize over k-points/basis functions/NEB images/AKMC searches/bias points, etc.

Synopsys QuantumATK Team Fruebjergvej 3 DK-2100 Copenhagen DENMARK www.synopsys.com/silicon/quantumatk.html quantumatk@synopsys.com +45 333 32 300

©2021 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at https://www.synopsys.com/copyright.html. All other names mentioned herein are trademarks of their respective owners.