

QuantumATK-M is a complete and fully integrated software suite for atomic-scale modeling of materials, professionally engineered using state-of-the-art scientific and software-engineering methods. It combines the power of a Python scripting engine with the ease-of-use provided by an intuitive NanoLab graphical user interface (GUI). All simulation engines share a common infrastructure for analysis, ion dynamics, and parallel performance techniques. This datasheet describes two products: QuantumATK-M and QuantumATK-M ForceField. You can download another datasheet on the NanoLab GUI.

Core Features of the QuantumATK-M Product

NEGF Method of Nanoscale Device and Transport Simulations

Non-Equilibrium Green's function (NEGF) module works with DFT-LCAO, Semiempirical and ForceField Modules (see next page)

- ▶ Types of Systems: Nanoelectronic Devices & Interfaces (2-Probe), Surfaces (Surface Green's Functions method)
- ► Include:
 - Surface, defect, interface, and grain boundary scattering effects
 - Charge transfer effects
 - External electric fields
 - An effective doping scheme to simulate doped semiconductors
 - Metallic gate electrodes and dielectric screening regions
 - Electron-phonon coupling (EPC) effects (with BTE, MD-Landauer, and STD-Landauer methods)
 - Relaxation of device geometries

▶ Obtain:

- Insight into catalytic activity of transition metal and transition metal oxide surfaces
- Band-alignment, Schottky barriers, and work functions for thin film/surface heterostructures
- Electronic surface states in external electric fields
- Thermal conductance/conductivity of materials, nanostructures, interfaces, etc.
- Electrical characteristics, such as I-V curves, on/off ratio, subthreshold slope, drain-source saturation voltage, drain-induced barrier lowering, transconductance
- Phonon-limited mobility and resistivity of materials
- Tunnel magnetoresistance ratio, spin-polarized tunneling current, and bias-dependent spin-transfer torque for material stacks that comprise the magnetic tunnel junctions
- Photocurrent and OCV (open circuit voltage) for solar-cell devices and LEDs
- ▶ Analyse: Transmission spectrum, eigenvalues, eigenchannels, device density of states (DOS), etc

Core Features of QuantumATK-M and QuantumATK-M ForceField Products

- **DFT-LCAO:** Simulation engine for density functional theory (DFT) using pseudo-potentials and linear combinations of atomic orbitals (LCAO) basis sets.
- **DFT-PlaneWave:** Simulation engine for DFT using pseudo-potentials and plane-wave basis sets.
- **SemiEmpirical:** Semi-empirical simulation engine for using DFTB, extended Hückel, Slater-Koster, and other tight-binding models.
- **ForceField**: Simulation engine for atomic-scale simulations (e.g. molecular dynamics) using classical potentials.

DFT-PlaneWave

→ 10²-10³ Atoms

DFT-LCAO

→ 10³-10⁴ Atoms

SemiEmpirical

→ 10⁵ Atoms

ForceField

QuantumATK-M Product	•	•	•	
QuantumATK-M ForceField Product				•
► Types of Systems: Molecules, (poly)crystals, polymers, nanostructures, alloys	•	•	•	•
Works with NEGF method for simulations of nanoelectronic devices, interfaces, surfaces, solar-cells		•	•	•
▶ Use: More than 300 LDA/GGA/MetaGGA DFT functionals	•	•		
► Hybrid functionals using the ACE approximation	•			
► Van der Waals models: DFT-D2 and DFT-D3	•	•		
► Hubbard U term for LDA and GGA		•		
 Methods for accurate band gap calculations of semiconductors and insulators (MetaGGA, DFT-1/2, Pseudopotential Projector shift methods) 	•	•		
► Norm-conserving Troullier-Martins PPs (FHI, SG15/PseudoDojo)	•	•		
 Predefined numerical atomic orbital basis sets for different accuracy levels 		•		
► Plane wave basis sets with automatic default cut-offs	•			
► Spin settings: unpolarized, polarized, noncollinear, noncollinear spin-orbit	•	•	•	
Built-in Slater-Koster models for group IV and III-V semiconductors, extended Hückel model with over 300 basis sets, and Tight-Binding models for strained systems			•	
 More than 300 empirical classical potentials included, Python interface for adding your own or literature potentials, support for custom combination of potentials 				•
▶ Perform: Calculation of band structure, fat band structure, DOS, Fermi surface, cohesive energy, defect formation energies, and transition levels, etc.	•	•	•	
Geometry and unit cell optimization using LBFGS and FIRE methods	•	•	•	•
Molecular dynamics (MD) (NPT, NVT, NVE,) simulations for studying mechanical (e.g. creep simulation), thermal properties, and physical processes (e.g. thin film growth); part of the MD-Landauer simulations to include EPC effects	•	•	•	•
 Nudged elastic band (NEB) for reaction path optimization (e.g. to get insight into catalytic activity of transition metal and transition metal oxide surfaces) 	•	•	•	•
► Adaptive kinetic Monte Carlo (AKMC) for long timescale kinetics (e.g. diffusion kinetics)	•	•	•	•
Phonon modes (part of the STD-Landauer method to include EPC effects), phonon bandstructure, DOS, and thermal transport simulations	•	•	•	•

Synopsys QuantumATK Team Fruebjergvej 3 DK-2100 Copenhagen DENMARK www.synopsys.com/silicon/quantumatk.html quantumatk@synopsys.com +45 333 32 300

©2018 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at https://www.synopsys.com/copyright.html. All other names mentioned herein are trademarks of their respective owners.