
WHITE PAPER

Maturing Container Security in Your Organization,
A Synopsys Blueprint
By David Benas

 | synopsys.com | 2

Introduction
While no longer considered wholly greenfield, some organizations are adopting containers for the first time. Unfortunately,
though, the baseline security expected in traditional network or cloud environments is often overlooked in containers. Whether
containers are new to your organization or you’re just now coming to terms with the complexity of securing them, this
whitepaper discusses a model by which to pursue the ideal state: demonstrably robust and secure containerization across your
organization. You can use it as a blueprint for either starting your container security journey or maturing it from where it currently
exists.

The Container Security Life Cycle
Containerization encompasses many application and network architectures, but the catchall term used to describe them can
abstract away the complexities of managing them at scale. Containers must come from somewhere, and that somewhere is
the development life cycle. Using the NIST 800-93 model of categorization, we can analyze container security programs in the
various phases of the container life cycle and see how robust their readiness for adoption is.

Initiation
Initiation refers to a container security program’s back-end features and is sometimes referred to as its “meta tasks.” This very
important area underscores the rest of the container life cycle’s design, implementation, and operation phases, meaning it
underlays the foundation of the organizational approach.

To understand its importance, we can further break down this category into the following subcategories:

•	 Education. How educated are your teams on containers and the implications of container security? Is knowledge centralized
around a few individuals and teams? As containerization is still a fairly greenfield activity, organizations commonly fall into the
pitfall of keeping it too centralized, with limited security knowledge often a symptom of limited implementation.

•	 Training. Distinct from education, training refers to the actual knowledge transfer by which all teams that interact, even
tangentially, with containers experience the relevant security aspects. As determined by their level of exposure to containers,
teams should expect to receive security training on a regular cadence or while they’re onboarded. Training and education
interplay as a very important baseline before and during container deployment to ensure that security is not siloed.

•	 Process and policy creation. Before beginning the journey of design and deployment, your organization will want to develop a
baseline layer of policy and processes around container security. You can significantly reduce a lot of friction if the baseline is
put into play before deployment.

Planning and Design
In an ideal “shift left” security model, information security teams step up into the architectural phases of development. The
benefits are clear: flaws identified earlier in the life cycle are simultaneously cheaper and easier to fix than rearchitecting an
already built and deployed application.

Container security offers no exception to this rule, in fact, early planning and design are just as—if not more—important here.
Containerized environments rely heavily on the containerized aspects of their security features, so not truly understanding them
can lead to unwanted consequences later in the application’s life cycle.

With these multiple moving pieces to consider, planning and design can be extremely complex and difficult to implement
properly in organizations opting for containerization. A useful baseline for this phase consists of the following elements:

•	 Security architecture. Important elements of a traditional security architecture also apply to the container environment, from
having available security reference architectures to ensuring that commonsense controls are in place, including perimeter
security, properly designed Identity & Access Management (IAM), adequate encryption and data protection controls, network
security (both in and out of the container), proper incident response logging and reporting, and the defense-in-depth controls
required to establish traceability.

•	 Container security expertise. Unfortunately, container security expertise is often noticeably lacking in the design phases of
containerized architectures. This seems counterintuitive, but if your organization has a centralized knowledge approach, the
lack of presence in this area is likely a direct consequence. Container security experts should be present in some way during
the design phase. This doesn’t necessarily mean that a security-trained employee must sit in on all design conversations and
panels, but resources in their stead should be available.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 3

•	 Architecture review. As with anything else in the software security world, you need to “trust but verify,” and the planning and
design phase is no exception. In fact, it is as necessary here as it is during the deployment phase. Architecture risk analyses
identify the assets an application should protect, the controls that protect those assets, and the threats attempting to violate
those controls. By performing an architecture review, it’s easier to see if missing controls or as-of-yet unmitigated threats are
present. This also becomes a useful exercise in the reverse—identifying threats your organization may not necessarily need to
consider in an architecture—thus saving effort by accepting risk in an informed manner.

Implementation
With the initiation and planning/design phases complete, the next step is to implement what was designed. Top-tier software
security programs perform baseline implementation with the following elements:

•	 Security tooling. Containers are a relatively young technology, so unsurprisingly, the available tooling is immature relative
to what organizations may expect. While this situation is progressively improving as major players offer more advanced
functionality, it is important to not lose sight of the technology-agnostic function of security tooling—that is, that such tooling
simplifies and automates tedious processes and performs tasks better than humans can. For containers, this often means
image scanning, but this should not be the limit of their contribution to your organization. A tooling baseline should be
established across all technology stacks, no matter where deployments occur. However, tooling is only as effective as the
results are ingested—gaps can easily open up if close attention is not paid to where the results go.

•	 Coding standards. Organizations that have robust traditional security programs may find it valuable to expand their coding
standards to include infrastructure-as-code and container configuration files into their workflows. Coding standards should
include some level of security code review as a prerequisite for deployment, especially container-centric code, which can
occasionally fall between the cracks if tooling or existing expertise don’t inherently cover it.

•	 Testing. Penetration tests of containerized applications and architectures can’t fall into the same boxes as “other” penetration
tests. All too often, organizations will perform a penetration test of a web application hosted on an orchestration platform
and do a configuration review of the cloud platform (or do a network penetration test on the internal network, if on-prem),
then check the compliance box. However, this approach is ineffective because it leaves out too many necessary contextual
elements of dynamic container security. A more reasonable approach is to ensure that each step is container-centric
at its core—that is, for a web application penetration test, ensure that a simultaneous assessor is testing the insides of
the containers, confirming that external influences on the web application do not have unintended consequences on the
orchestrated or containerized platform’s internal state.

•	 Usage and support. From a security perspective, usage and support can be considered as similar buckets—when containers
are used, some elements inherently support their usage from a security perspective. But does the organization have the
necessary security support for its goals? This can be considered, in part, an operational question, but it should also form the
prerequisites of the champions providing security knowledge about the container technologies in play.

Operation
The operation of containers encompasses the day-to-day tasks related to ensuring their continued functionality, their
orchestrators, and everything else running within them. Therefore, the operational elements of running containers, which include
maintaining their environment and disposing of them once retired, are as important as design and implementation to the
organization’s container security model.

In accordance with NIST 800-93, we can split the operations phase into the following elements:

•	 Operation and maintenance. A key element related to operations is the visibility available to the teams responsible for them.
Logging and monitoring need to be in place, but adequate access policy and training should also be available to teams so
that they can use them. Simply having the checkboxes in place does little for organizational security, established processes
will help your threat response and other security-tangential issues that may arise. Another important element is keeping up
with the so-called hydration of containers, that is, ensuring that images, code, and even the platform itself are up to date and
patched. Famously, one of the foundational elements for implementing containerization is the ease with which containers
can be updated and patched. Of course, this doesn’t mean there is no complexity involved, but having a grounded policy and
multiple parties working together will help achieve the benefits of containerization faster, with little to no security friction.

•	 Disposition. The handling of containerization throughout its life cycle is often referred to as “dispositioning,” but here we
categorize dispositioning as the provisioning and deprovisioning of containers. Your organization should have a set process
for when containers or environments as a whole are terminated, along with timelines and proper communication channels
among the security teams. Accumulation of outdated, unused, and unmaintained containers inherently results in significantly
larger attack surfaces that can and have been breached. The important elements for decommissioning containers are that the
responsibilities for doing so are well defined and that someone ultimately ensures that they have been removed as planned.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 4

Benchmarking Container Security
In the prior section, we discussed the underpinnings of a successful container security program in an organization by analyzing
what qualifies as a secure, robust life cycle. A huge gap was (intentionally) left in that analysis: the security of containers
themselves. Based on years of industry experience and derived best practices, we have put together the overarching categories
and capabilities within those categories that encompass what “container security” consists of. We touch on the broader
categories into which these capabilities fall under, rather than every element that composes them.

Imagine this model as a pyramid of sorts, where the lowest level holds the foundational elements of host security, then
moving up a row, we have platform security elements, and finally, the elements of the container and orchestrator itself at the
top. Relevant to all these elements, we underlay security monitoring and threat analytics, which are important in all layers. Of
course, in a world where managed cloud providers remain dominant in application architectures and deployments, some of the
bottom levels of the pyramid can be safely said to be out of scope for certain applications. However, the shared responsibility
of security is just as important, so it’s important to understand each step taken to secure your workload.

Foundational Elements of Host Security
Infrastructure security encompasses the underlying infrastructure as well as the robustness of the physical and virtual
resources that support the running of containers, both metaphorically and literally. Containers ultimately run on physical
systems, so the security of a system’s hosting environment directly impacts the security of the containerized environment that
resides on it.

While many deployments are done in a variety of flavors, the hosting OS’s security and controls are important for the same
reasons that infrastructure security is so important—that is, if the OS itself is compromised, there is nothing that can be done to
protect the workloads running in it. Using best practices such as effective IAM, OS security controls, and secure deployments
while operating under an assumed compromise model predicate the foundational security elements of containerized
architectures.

Platform Security
An important piece of securing a container platform is understanding security controls as they relate to the platform itself, not
just the infrastructure hosting the containers or the applications hosted in them.

Defending the various components of orchestrators and container platforms is a key objective of the penetration testing,
configuration, and design review of an organization’s containers. The platform to which applications or services are being
deployed directly impacts their security and can often be a source of confusion for security teams—who’s responsible for a
particular layer, and what can or should be done to defend it?

Additionally, the runtime itself, which is ultimately responsible for a container’s isolation and execution aspects, should be
inspected to ensure that controls are implemented in the expected way and whether those controls are indeed as effective as
designed.

Finally, management interfaces need to be robust. As these are often shortcuts into an environment, they will be treated as
such by attackers as well and hold an important part of the overall threat model.

Security of the Orchestrator and Containers
The following concepts should be a fundamental part of your organization’s overall containerization security posture:

•	 Image security. While it should be treated as important despite its smaller impact, image security does not on its own define
a container’s security program. Verifying image integrity is a seemingly straightforward security goal that can often be the
cause for significant security issues. Tooling can help ease this friction, but tooling alongside centralized policies and defined
responsibilities for each element can be the difference between ineffective and slow vs. robust and agile.

•	 Runtime security. Often a gap, securing runtime for containers should be treated no differently than securing the servers
running on a traditional network. Endpoint protection in the container world looks quite different and often involves the
overhead of agents running in sidecars, which increases the problem’s complexity. However, ensuring that threat detection
and behavioral elements are in play allows for a defense-in-depth approach to container security. Even if the architecture has
flaws, the code has bugs, or the configuration is incorrect, being able to flag and detect potentially malicious state-changing
behavior within containers allows for these issues to be significantly more limited than they would be otherwise.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 5

•	 Network security. Traditional network security is often as robust as the tooling available, with design notes and lessons learned
growing steadily over the decades. Many of those lessons do not make their way into the containerized realm, but a secure
network should include the network deployed in an orchestrated or containerized environment, alongside how containers or
orchestrators may interact with elements outside their scope. Service meshes are common in the container realm, but they are
not the magic fix-all for networking and should be analyzed as any other network. Network policies and tooling in this space
are still fairly young, but implementing a baseline allows for later implementation of more mature solutions with significantly
less tension and without compromising security down the line.

•	 Incident response and reporting. A tale seemingly encountered time and again by security experts is that “traditional”
organizational incident response teams do not have the access or the expertise required to adequately detect and respond
to threats in containerized environments. Some organizations would agree with this as it has been a problem for lifted-and-
shifted applications to the cloud in recent years as well. Containers are not unique in this regard but should be treated as
equally important. “Fire drill” exercises with IR and forensics teams should include containerized environments, in fact, these
teams may find containers to be their preferred environment to work within as containers are the perfect medium to apply
forensics and IR techniques. By design, containers are self-contained, they have an expected input, output, and function, and
their boundaries allow for a straightforward analysis of what they’re actually doing and the potential delta with what they
should be doing.

Conclusion
Implementing a robust and secure container security program in your organization is no easy task. However, armed with an
understanding of the key features a mature container security program should have, along with an understanding of what
elements encompass “secure containers,” this otherwise monumental task can be broken down into component parts. Ideally,
this whitepaper has presented you with an understanding of those parts.

One key takeaway is that no organization starting this journey should be expected to do so alone—it’s best to seek guidance
from trained experts in container security who have proven experience in helping organizations implement each of these tasks.
A trusted team can help you take the next steps, from understanding where you currently stand on the container security
continuum to helping you adapt container security for your own organization.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Synopsys provides integrated solutions that transform the way you build and deliver software,
accelerating innovation while addressing business risk. With Synopsys, your developers can
secure code as fast as they write it. Your development and DevSecOps teams can automate
testing within development pipelines without compromising velocity. And your security teams
can proactively manage risk and focus remediation efforts on what matters most to your
organization. Our unmatched expertise helps you plan and execute any security initiative. Only
Synopsys offers everything you need to build trust in your software.

For more information, go to www.synopsys.com/software.

©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at www.
synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. September 2023

The Synopsys difference

 | synopsys.com | 6

http://www.synopsys.com/software
http://www.synopsys.com/copyright.html
http://www.synopsys.com/copyright.html
https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

