SYNoPSYS'

WHITE PAPER

Build Security Into Your SDLC With Coverity

Table of contents

DevOps and security go hand inhand ..o 3
How Coverity fits INTO YOUr SDLCoooieiiieeee e 3
HOW d0ES COVEIITY WOTK? ...t ettt e e e e aaeeeeanee s 4
Coverity Capabilities.c.coouiieee e 5
Language and SECUMTY COVEIATEcuiiiiiieiieiieeieete ettt ettt ettt e st e bt e ste st e bt ente e st e saeenteeneesneenseennas 5
Frameworks and COMPIIEISc.voiiiieeieee ettt e et eebeesebeesseeenseessaeens 5
[a1 =T r= Y 4o 1= TSR PSRRRPSRRRURRNt 6
Vulnerability identifiCationco.ooiiiuiiiicieceee ettt ettt 7
COVENTY COMPONENTSooiiiiieiie ettt ettt e et e e et e et e e etbe e e sbeeessseeeasseeeassseesnsaeesnssaesssaeesseesnsseeenssaens 9
1010 0] 0 1= U PPPPURPR 13

W in f & | synopsys.com | 2

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

DevOps and security go hand in hand

Creating software applications has become an essential part of almost every enterprise. But as organizations create a plethora
of new applications, new security threats are emerging, and that presents a growing challenge for enterprises that need to
secure their applications against potential attacks. More than half of the vulnerabilities found in applications result from coding
mistakes that could have been prevented. So development organizations are creating security programs and policies to find
security vulnerabilities in their applications earlier in the DevOps life cycle and minimize the cost of finding and fixing them.

DevSecOps is the next step in the evolution of DevOps: it integrates security into DevOps workflows as an essential component.
Embedding security practices in this way helps organizations ensure that they can detect security vulnerabilities early, assess
their risks, and take informed actions to fix them. It is no longer economically feasible to employ security testing only at the
production stage. Instead, security tools must aid in the software development process, fit seamlessly into the developer’s
workflow and CI/CD pipeline, and not slow down the software development life cycle (SDLC).

Essential elements of a successful DevSecOps strategy

 Developer-centric approach. Organizations must get developers’ buy-in on using security testing solutions in their
workflow. For example, a static analysis tool must support the programming languages, frameworks, and platforms
developers use. It must discover defects accurately, and it must integrate into the developer's workflow, especially IDEs
and SCMs.

* Integration into existing pipelines. To automate application security solutions in a high-velocity, agile development
pipeline, organizations must use tools capable of integrating into the pipeline at many stages, from the developer's
desktop, to the build server, to QA testing.

* Monitoring and managing. Organizations should use project management dashboards with reporting capabilities to
monitor and manage application security during the entire SDLC.

+ Risk assessment and prioritization. Teams need trusted risk analysis based on security testing to make informed
decisions about application risk and prioritize fixes. It's vital to have tools that support various security standards, such as
PCI DSS and OWASP Top 10.

These security practices have “shifted left” toward developers, who are becoming more involved in making decisions about
security testing tools. Recent community research by an application security tools vendor indicated that mature DevOps teams
integrate automated application security testing tools almost twice as often as immature DevOps teams, and that developers are
happier with more-evolved security practices in the DevOps process.

Static application security testing (SAST) tools allow organizations to perform white box testing (i.e., look at the application

from the inside out), which enables testers as well as developers to find potential flaws in the code by looking at the code using
automated scanning tools. In comparison, dynamic black box testing relies on testers’ knowledge of an application’s capabilities
to be able to model every aspect of the application behavior. SAST solutions, on the other hand, can be deployed earlier in the
SDLC and therefore can provide useful insights to the developers about security issues even before they commit the code, and
complement other security tools in the pipeline by reducing the scope of further testing. Thus, making SAST solutions part of the
DevOps process right from the developer’s desktop has proven more effective in shipping secure applications faster.

A note on terms: “SAST” and “static (code) analysis” are often used interchangeably. They both refer to the analysis and scanning
of program code without executing it in order to find weaknesses and security vulnerabilities.

How Coverity fits into your SDLC

Figure 1 shows a typical CI/CD pipeline. The workflow starts with developers writing code in their IDEs and committing it to the
repository. SAST integration at this stage helps prevent security vulnerabilities from entering the code. It also helps eliminate the
inefficiencies and inaccuracies of manual code review by identifying vulnerabilities before the code is merged into a repository. IDE
plugins and incremental analysis methods make this process even faster, allowing a SAST tool to analyze code as it's being written.

At the coding stage, a SAST solution should identify true-positive issues so that developers don't waste time looking at false
positives. This is also when developers are most familiar with their code and can quickly fix issues identified by SAST. By
contrast, later in the SDLC, fixes take longer, require more resources to retest for QA, and thus are more expensive for the
organization.

W in f & | synopsys.com | 3

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Itis no Ionger Teams can also add SAST as a gate to their CI/CD pipeline so it can fail the build
economically feasible to or create issue tickets automatically if it finds quality and security issues or policy

. . violations in the code. This way, pull requests or product releases can be blocked
employ securlty teStlng if certain types of issues are present in the code. SAST scanners can also perform
only at the production enhanced security compliance tests later in the CI/CD pipeline.

Stage' Instegd, .securlty A cautionary note is that SAST scanners are notorious for not being “developer-
tools must aid in the friendly” because of high false-positive rates. It is important that SAST tools find real
software development security issues and not waste developers’ time dealing with the false positives.

process, fit seamlessly
into the developer’s
workflow and CI/CD T
pipeline, and not slow J _ esioy
down the software conmt

development life cycle.

Figure 1. A typical SDLC pipeline.

Coverity®, provided by Synopsys, is a state-of-the-art SAST solution that gives
developers and development managers exactly what they need. Developers

get agility, ease of use, and accuracy so they can create secure, high-quality
applications. Organizations get scalability, issue management, and risk analysis
capabilities, along with compliance to industry standards. Coverity integrates
seamlessly into the developer's workflow and the organization’'s CI/CD pipeline.

With the Code Sight™ IDE plugin, Coverity identifies critical quality defects and
security vulnerabilities right at the developer's desktop, as code is being written, even
Coverity Analysis Engine before unit testing. Furthermore, integrating Coverity into the CI/CD pipeline, using
either native plugins or simple scripts, helps developers and development managers
find and fix vulnerabilities early in the SDLC. Coverity's compliance and vulnerability
reporting provide a high-level picture of the risks associated with applications and
help security managers make informed decisions regarding application deployment.

Issue
Management/Reporting

_ Central Polaris Server) There are three key components of the Coverity architecture: the developer
interface (the Code Sight IDE plugin), the scan clients, and the central server that
hosts the analysis engine and the server for issue management. A scan client is
where the scan is triggered from, for example, a Cl plugin or a desktop scanner. A
simplified architecture diagram is shown in Figure 2. For enterprise web and mobile
application development, some users will want to deploy Coverity using Synopsys'’
cloud-based Polaris Software Integrity Platform™. In Polaris, Coverity components
are deployed in the Google Cloud infrastructure, with each instance uniquely issued
to a customer and isolated in a containerized environment. For organizations not
looking to deploy Coverity in the cloud, an on-premises deployment option that
includes the Coverity Connect portal is also available. The same Coverity analysis
engine is used for both on-premises and cloud-based deployments. Developers
work with Coverity through the Code Sight IDE plugin, and all Code Sight IDE plugins
are available for developers for both cloud and on-premises deployments.

Code Sight Scan
Plugin Clients

Figure 2. Simplified architecture of
Coverity deployment on Synopsys'’
cloud-based Polaris Platform™.

How does Coverity work?

Static analysis involves a variety of techniques to anticipate outcomes without
actually running the application. Similarly, Coverity uses patented analysis
techniques that provide deep and accurate analysis. These techniques evolved
from an understanding of real-world code and design patterns and include highly
accurate dataflow, control flow, and semantic analysis, among others." Using these

¥ in f & | synopsys.com | 4

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

techniques to perform full-path and control analysis, Coverity can accurately identify code that would result in security and
reliability issues and recommend remediation steps. Coverity’s full-path interprocedural analysis uses a vast library of quality
and security checkers to examine potential execution paths and outcomes. This analysis technique can detect issues spanning
multiple files, enabling comprehensive analysis of complex code bases. Additionally, one of the greatest strengths of Coverity
analysis is that it not only identifies pattern-based issues but also has a validation component that collects evidence for the
presence of a defect. This greatly improves accuracy and minimizes false positives.

Critical issues that Coverity can identify include buffer overflows, SQL injection, resource leaks, and cross-site scripting. To ensure
software quality, Coverity identifies potentially overlooked compilation warnings, difficult-to-detect concurrency issues, and potential
resource leaks and race conditions for some languages. Additionally, Coverity can help identify policy violations based on supported
standards or custom rulesets defined by users. Better security compliance from developers helps security executives improve
operational efficiencies and release velocity, which translates into increased ROI for application security solutions.

Coverity capabilities

Language and security coverage

Coverity supports 21 languages (Figure 3) and more than 70 frameworks, including common systems and desktop application
languages (e.g., C, C++, C#, Java), and web and mobile application languages (e.g., JavaScript, Swift, Kotlin, Go, .NET, Ruby,
VB.NET, Node.js). Language versions are updated often so Coverity stays current.

Java is used for both desktop and web and mobile applications, so a SAST solution must be able to identify common and high-risk
vulnerabilities in Java applications before deployment. For example, a SAST tool should be able to identify the security weaknesses
in the OWASP Top 10, a list of the most critical weakness types in web application development, and the associated common
weakness enumerations (CWEs). Coverity provides broad, deep support for identifying these weaknesses. And Coverity supports
all except A9 from the OWASP Top 10 categories,? with multiple checkers for each category. For example, for category A5 (Broken
Access Control), Coverity uses almost 100 sophisticated, unique checkers to identify various issues in Java applications. Using the
CWEs associated with Coverity checkers, organizations can also build their own standards and taxonomies.

Coverity also supports up-and-coming languages such as Swift, Go, and Kotlin. Go has become a developer favorite because
it's fast, easy to use, excellent in concurrency, and easy to maintain, and it runs with garbage collection, so memory not in use
can be reclaimed. Stack Overflow's 2019 Developer Survey puts Kotlin among the top five most-loved languages, with Swift
coming in sixth. As adoption of these languages in the enterprise software ecosystem proceeds quickly, application security
testing solutions, particularly SAST solutions, must support them. That's why Synopsys ensures that Coverity can support these
languages and their newest versions to help developers and their managers develop and ship secure, high-quality applications.

Fortran

Figure 3. Languages supported by Coverity 2020.06.

Frameworks and compilers

Frameworks provide reusable software environments, as well as some generic built-in functionalities and flows, that allow
developers to build and maintain software applications more easily. For a comprehensive SAST tool like Coverity, a deep
understanding of framework semantics is essential to maintain a low false-positive rate.

W in f & | synopsys.com | 5

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-Broken_Access_Control
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-Broken_Access_Control
https://insights.stackoverflow.com/survey/2019

Coverity supports 25 frameworks for Java and 27 client- and server-side frameworks for JavaScript. In addition, Coverity
supports several other JavaScript frameworks, including cloud API frameworks for cloud-native JavaScript, and frameworks
for other languages, such as C# and Python. It also supports popular Spring and Struts frameworks for Java, and even up-and-
coming ones such as Passport for JavaScript. With this expansive framework support, Coverity can provide more accurate and
more comprehensive security vulnerability identification in web applications.

For compiled languages, Coverity wraps around the native build to enable build capture analysis. Different compilers that build
applications optimize program flows in different ways. For some low-level languages with highly complex build environments,
such as C/C++, a SAST tool must parse the make files and build system to understand and capture code accurately. To
understand the application flow for compiled languages and compiler operations and optimizations, Coverity supports about 50
compilers for compiled languages. The Coverity datasheet has an overview of supported compilers and frameworks, and the
Coverity Installation and Deployment Guide provided to Coverity customers via the Synopsys community page has a detailed list
of supported versions.

Integrations

As mentioned earlier, SAST tools should not slow down DevSecOps and should integrate seamlessly into the CI/CD pipeline.
Every organization has its own set of processes and tools to manage DevOps, and a comprehensive set of APIs enables teams
to easily integrate Coverity and Polaris into the DevOps process flow.

As shown in Figure 1, the DevOps process flow starts at the developer’s desktop. Code Sight integrates seamlessly into the IDE
to improve productivity and eliminate security and quality issues as developers are writing code.

Organizations can also integrate and configure Coverity to scan automatically as the Cl server is building the code. This way,
Coverity can be used as a quality gate for the project and fail the build if the project violates certain policies. It can also be
configured to notify the developers responsible for such policy violations, and even automatically create issue tickets through
integrations with bug-tracking systems such as Jira and Bugzilla.

Figure 4 shows Coverity’s SDLC integration capabilities via the Polaris platform.® There are similar integrations available for on-
premises deployment as well. Synopsys professional services and field teams can also help users create custom integrations—
for example, pull request integrations with Git and other tools.

Figure 4. Coverity SDLC integration capabilities via the Polaris platform.

W in f & | synopsys.com | 6

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf

Vulnerability identification

Some of the critical security vulnerabilities that Coverity can identify include:

+ APl usage errors + Hard-coded credentials + Path manipulation

- SQL injection - Buffer overflows - Security misconfigurations

-+ Cross-site scripting - Cross-site resource forgery - Concurrent data access violation
+ Insecure data handling + Memory corruptions

Example 1: SQL injection

Let's look at SQL injection, one of the most vulnerable security issues in web applications (see this list of examples). A SQL
injection attack occurs when an attacker inserts tainted user data into a SQL statement that has a set of safety requirements
or obligations. Figure 5 shows a snippet of a PhpMyAdmin application program block containing a possible SQL injection
vulnerability. The ‘orig_auth_plugin’ variable is assigned a user-supplied value that might return an untrusted data and
concatenates to form a SQL query in an unsafe manner. If the application doesn't correctly sanitize this insertion, the tainted
characters could change the statement to something unintended by the developer. Executing the statement could affect the
confidentiality, integrity, and availability of the database system and enable the attacker to expose information that should be
restricted.

Figure 5. PHP code snippet highlighting a possible SQL injection issue in a PhpMyAdmin application.

Coverity identifies critical issues such as SQL injection in the application and offers remediation guidance. It also provides context-
aware sanitizer libraries that understand the context related to unsafe data outputs as well as the appropriate sanitization methods
and relevant technologies in use in the code. Thus, Coverity can produce actionable remediation guidance based on the information
it knows about the program and help developers fix the issue quickly and accurately. For Java and C#, Coverity also offers an open
source sanitizer library that includes sanitizers for difficult contexts not usually available in other libraries.*

Example 2: Cross-site scripting

Identifying cross-site scripting (XSS) issues and providing context-aware remediation advice are also Coverity's strengths.
According to the OWASP Top 10 website, XSS is the second-most-prevalent issue in web applications. The vulnerability allows
an attacker to inject malicious, executable script code into an application or website. Without proper data sanitization, the script
code could be executed by the browser of an unsuspecting user visiting the website. Potential consequences of such XSS
attacks include an attacker stealing the user’s keystrokes or cookie information, or redirecting the user to a malicious website.

To prevent XSS, an application must perform context-aware parsing and sanitization of HTTP requests. As explained in this blog
post, input validation close to the data source can help protect against the exploitation of this vulnerability, but it will not remove
the defect. Context-aware sanitization of the input—specifically, understanding how the data is being used to nest and escape
HTML in the right order—near the data sink is necessary to remove XSS vulnerabilities.

Figure 6. An XSS vulnerability example in a WebGoat-Legacy application, before remediation (top) and after remediation by
escaping the HTML (bottom).

W in f & | synopsys.com | 7

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://en.wikipedia.org/wiki/SQL_injection#Examples
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.synopsys.com/blogs/software-security/remediating-xss-single-fix/
https://www.synopsys.com/blogs/software-security/remediating-xss-single-fix/

Coverity detects XSS vulnerabilities
and offers libraries to help developers
add context-aware sanitization. As
shown at the top of Figure 6, the
WebGoat-Legacy application shows

The unsanitized 's.WebgoatContext().getFeedbackAddressHTML()' results into an

XSS defect.

The Escape library is imported in the source file.

The Escape library imported from Coverity is used to escape the HTML and remedy

the defect.

W in f & | synopsys.com | 8

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

an XSS vulnerability due to the unsanitized 's.getWebgoatContext().getFeedbackAddressHTML()'. To eliminate this defect, the
application must sanitize the input at the location where it's used (the sink). As shown at the bottom part of Figure 6, a developer
can use Coverity’s Escape library (imported, as shown in the middle part of Figure 6) to escape the HTML and remedy the defect.

Coverity components
There are three main components of the Coverity ecosystem:

+ Developer interface: IDE plugin
+ Analysis: Coverity Analysis engine

- Issue management and reporting interface: Polaris or Coverity Connect dashboard

IDE plugin

Developers interface with Coverity through an IDE plugin. Coverity provides IDE plugins for many of the common IDEs that
developers use, such as Eclipse, and also for less-common IDEs, such as WindRiver Workbench. Code Sight is our latest IDE
plugin for Coverity and other SIG tools, such as Black Duck® (Figure 7). Code Sight identifies security issues using incremental
scanning techniques while developers write code, but it doesn't require them to switch tools or manually invoke a scan. By
keeping developers in their familiar IDE environment, Code Sight improves productivity over nonintegrated scanners. It also
provides remediation advice and context-aware training through its eLearning integration.

Integration. Code Sight integrates with most commonly used IDEs, including IntelliJ IDEA, Visual Studio, and Eclipse. When Code
Sight is installed, it detects Synopsys tools based on your product subscriptions, and downloads the relevant engines in a matter
of seconds. No further configuration is needed.

For SAST analysis, Code Sight downloads the Coverity Analysis engine, which runs a high-fidelity file-level analysis behind the
scenes every time a file is opened or saved. Developers can specify the scope of results shown, from one file to all open files. For
each issue found, Code Sight provides a dataflow trace, including the line numbers of the main event and supporting events, to
help developers understand the scope of the issue and find all problem areas in the code.

Code Sight automatically syncs with the Coverity server, whether deployed on Polaris or on-premises, so the baseline for
incremental analysis is synced automatically from the central server to the developer’s desktop.

Remediation guidance. Code Sight integrates with relevant eLearning courses to help developers get training related to security
issues and best practices right when they need it. When developers view an issue in Code Sight, they’ll get links to relevant
elLearning courses that help them understand the context of the vulnerability and take steps to develop more secure coding
practices. This capability helps organizations nurture a culture focused on weaving security into software design, development,
and testing.

Coverity Analysis engine

The Coverity Analysis engine is the horsepower running behind the scenes to find security and quality defects in the code.
Coverity Analysis supports both build capture and buildless capture of issues, depending on the language. This way we support
easy integration into an in-band development pipeline (via build capture) and an out-of-band security pipeline (via buildless
capture).

Build capture. For compiled languages, such as C/C++, Coverity supports build capture and wraps around a native build to
understand native compiler operations and optimizations. This functionality helps the Coverity Analysis engine understand
information about dependencies and build-related programs.

Figure 7. Viewing issues found by Coverity in the developer’s IDE through the Code Sight plugin.

W in f & | synopsys.com | 9

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Line where the issue is found

Detailed description of the issue

SQL Injection

Buildless capture. Buildless capture analysis requires minimal user knowledge and no build. It's geared toward security teams
that don't have access to development or build tools to quickly get analysis. Users only need to provide the location of the project
on disk or in a Git repository. Buildless capture also allows users to limit the analysis to a specific set of files and exclude other
files, such as test cases for library code, libraries the code doesn't specifically require, and so on.

Coverity supports buildless capture for C# and JavaScript projects. For Java projects, Coverity can perform analysis in either
mode.

Dashboards for cloud and on-premises

Once Coverity Analysis finishes scanning the source code, users can view and manage the issues it found through the Polaris
or Coverity Connect web portals, or the IDE plugins. As described earlier, Code Sight and other IDE plugins help developers

fix issues as they code. The Polaris and Coverity Connect web portals let developers, development managers, and security
managers view and manage the issues Coverity finds. Additionally, both web portals provide a range of high-level reporting
capabilities, which can help users prioritize issues, assess risks associated with the applications, and present succinct findings
to management executives.

Polaris is the central platform for the Synopsys application security portfolio. It enables development and security managers to
triage and manage all their application security testing results on one platform, and it is the way Synopsys recommends that
organizations deploy Coverity for cloud deployments. Figure 8 shows the Polaris dashboard and reporting platform.

For on-premises deployments, the Coverity Connect web interface is available to view and manage analysis results and generate
reports via the Policy Manager™.

Figure 8. The Polaris dashboard for issue management.

¥in f | synopsys.com | 10

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Compliance reports. In addition to managing projects, development and security managers also need to generate compliance
reports for a variety of industry standards (e.g., OWASP Top 10), assess risks, and prioritize attention to specific findings.

The Polaris dashboard and the Coverity Connect web portal provide highly intuitive reporting capabilities so stakeholders can
accomplish their tasks. These reports help organizations create priority lists based on their risk assessment and focus on

the issues that matter the most for them. For example, financial service organizations need reports for PCI DSS compliance,
whereas organizations developing web applications are more interested in risks relating to OWASP Top 10 categories. And both
groups can use the Polaris dashboard or the Coverity Connect portal to generate reports and assess and manage risks.

Trend reports. Each project has an issue trend report that is updated with each analysis, so managers can view a trend graph
and track the progress made on issues. Security managers can use trend graphs to assess the organization's progress toward
reducing security risks and demonstrate the ROl for Coverity.

Figure 9 shows how the Polaris dashboard can also filter issues by standard and generate reports for executives. Users can

W in f % | synopsys.com | 11

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

manage all projects through this dashboard and view issue types and their risk scores.

Similarly, Figure 10 shows an example of OWASP Top 10 category issues displayed as a pie chart in the Coverity Connect Policy
Manager.

Figure 9. Filtering issues in OWASP Top 10 categories for risk assessment, reporting, and prioritization.

Figure 10. OWASP dashboard in Coverity Connect.

¥ in f & | synopsys.com | 12

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

Summary

Coverity provides developers with a comprehensive SAST solution that offers the agility, ease of use, and accuracy they need

to write high-quality, secure code without leaving their development environment. With the Code Sight IDE plugin, Coverity
seamlessly integrates into the developer’s environment, aids the software development process, and helps developers sign off
on code changes efficiently. High-fidelity incremental analysis in Code Sight and real-time results help developers stay agile in Cl/
CD workflows without compromising the accuracy of their code.

Coverity's support for a wide range of languages, frameworks, and compilers, as well as its integration with other stages of the
CI/CD pipeline, enables users to onboard a wide variety of projects and employ Coverity as a quality gate. Its high accuracy, low
false-positive rate, and fast analysis help development and security teams save time and resources and accelerate software
development.

Deploying Coverity using Synopsys' cloud-based Polaris platform allows enterprises to employ a SAST solution with the
scalability of a public cloud environment. The Polaris dashboard and reporting capabilities give users a highly intuitive interface
to manage projects, assess associated risks, and generate issue reports for executives. Development and security managers
can use status and trend information to measure the impact of changes without disrupting the development cycle. Similar
dashboarding and reporting capabilities are also available via the Coverity Connect portal for on-premises deployment.

To learn more about Coverity or request a demo, please visit the Coverity SAST webpage.

Endnotes

1. For more information, see “A Few Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real World” [https:/cacm.acm.org/
magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext].

The OWASP Top 10 category A9 (Using Components With Known Vulnerabilities) is covered by Black Duck, Synopsys’ software composition analysis tool.

For Coverity's native, out-of-the-box integrations, please refer to Coverity datasheet.
Sanitizer libraries can be found at https://github.com/coverity.

W in f % | synopsys.com | 13

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-Using_Components_with_Known_Vulnerabilities
https://www.synopsys.com/content/dam/synopsys/sig-assets/datasheets/SAST-Coverity-datasheet.pdf
https://github.com/coverity
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

SYNoOPSYS'

The Synopsys difference

Synopsys helps development teams build secure, high-quality software, minimizing risks while
maximizing speed and productivity. Synopsys, a recognized leader in application security,
provides static analysis, software composition analysis, and dynamic analysis solutions that
enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source
components, and application behavior. With a combination of industry-leading tools, services,
and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps
and throughout the software development life cycle.

For more information, go to www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

Contact us:

U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2021 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at
www.synopsys.com/copyright.html. All other names mentioned herein are trademarks or registered trademarks of their respective owners. February 2021

¥ in f & | synopsys.com | 14

http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	_Ref40367376
	_Ref42862759
	_Ref42874294
	_Ref40370564
	_Ref42874010
	_Ref47960887
	_GoBack
	_Ref42860746
	_Ref42860748
	_Ref47967511
	DevOps and security go hand in hand
	How Coverity fits into your SDLC
	How does Coverity work?
	Coverity capabilities
	Language and security coverage
	Frameworks and compilers
	Integrations
	Vulnerability identification
	Coverity components

	Summary

