
GUIDE

Better. Faster. Stronger.
Complementing Static Analysis With
Software Composition Analysis for
Open Source Management

 | synopsys.com | 1

Table of contents

Introduction .. 2

Looking at unmanaged open source risk ... 2

License risk of unmanaged open source...2

Quality and maintenance risks of unmanaged open source ...2

Security risk of unmanaged open source ...3

Managing your open source use: The DIY approach ... 3

Step 1: Inventory your open source ..3

Step 2: Control your open source ...4

Step 3: Ensure license compliance ...4

Step 4: Ensure code quality ..4

Step 5: Map open source to known vulnerabilities ..5

Step 6: Manage risk and monitor for new threats ...5

SCA: A better, faster, stronger path to open source management ... 6

Better: Get a complete view of the open source in your codebase ..6

Better: Eliminate open source license noncompliance ...6

Faster: Continuously monitor the quality and security of the open source you use ...7

Stronger: Combine Black Duck SCA with Coverity SAST ...7

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 2

Over 60% of the
code in an average
application is
composed of open
source components.

Do you know whether
the open source
components in your
applications use
permissive or viral
licenses?

Do you know whether
the open source
components in your
applications are
abandoned?

Introduction
Static application security testing (SAST) tools, such as Coverity® SAST, are critical for
uncovering and eliminating issues in proprietary code early in the software development life
cycle (SDLC) by scanning code for flaws while that code is in a nonrunning (i.e., static) state.

However, SAST isn’t effective in finding third-party open source software vulnerabilities
(CVEs) or identifying open source license types or versions. Open source is an essential
component of application development today, with over 60% of the code in an average
application composed of open source components.1 Adding a software composition
analysis (SCA) tool, such as Black Duck® SCA, is as imperative to your software
development strategy as using SAST to test the code your developers write.

This guide looks at some processes you can put in place to manage your open source use
and strategies to manage open source risk. It also highlights the challenges you’ll face along
the way and recommends an SCA approach to address or avoid those issues.

Looking at unmanaged open source risk
License risk of unmanaged open source
An open source license is a type of license that allows the source code to be used, modified,
or shared under defined terms and conditions. Black Duck SCA scans indicate that the
20 most popular licenses cover approximately 98% of the open source in use. Whether a
particular license is one of these popular licenses, a variant license, or one of the thousands
of less commonly seen licenses, it almost always has specific restrictions and obligations
that users must comply with. For example, a “permissive” license—the most basic type of
open source license—allows you to do whatever you want with the code as long as you
acknowledge the authors of the code and follow other obligations such as redistribution and
documentation requirements. A viral or “copyleft” license adds further requirements to the
permissive license. For example, if you distribute binaries, you must make the source code
for those binaries available. The source code must be available under the same copyleft
terms under which you originally got the code; in other words, you must give it away for free.
You can’t place additional restrictions on the licensee’s exercise of the license.

Failure to comply with open source licenses can put you at significant risk of litigation and
compromise of intellectual property (IP). In their experience performing code audits for M&A
due diligence, Synopsys’ Black Duck Audit Services team has found that 95% of the scans
they conduct reveal open source that the target didn’t even know was there, and 85% of the
codebases examined contain license issues.

Quality and maintenance risks of unmanaged open source
Black Duck Audits conducted in 2018 found that 85% of the codebases scanned
contained open source components that were more than four years out of date or had no
development activity in the last two years. When an open source component is inactive and
no one is maintaining it, no one is addressing potential issues such as weaknesses and
vulnerabilities. If you use such a component, you’re exposing your application to potential
failure or exploit.

When abandoned open source components make their way into your applications, your
developers may need to take on the responsibility for fixing any flaws or vulnerabilities that
could arise in the future. Part of open source management best practices is to maintain
a comprehensive, up-to-date inventory (also known as a software bill of materials) to
flag components that are updated infrequently and may require hands-on attention or
replacement.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/solutions/by-security-need/open-source-security.html
https://www.synopsys.com/software-integrity/solutions/by-security-need/mergers-and-acquisitions.html
https://www.synopsys.com/software-integrity/solutions/by-security-need/mergers-and-acquisitions.html
https://www.synopsys.com/blogs/software-security/software-bill-of-materials-bom/

 | synopsys.com | 3

Security risk of unmanaged open source
Reports show that, on average, 67% of commercial applications contain open source
security vulnerabilities.2 The NVD reported over 17,000 vulnerabilities in 2019 alone; that’s
more than 45 vulnerabilities every day!

Because of the ubiquity of open source use, attackers see popular open source components
as a target-rich environment.

Only a handful of open source vulnerabilities—such as the Heartbleed vulnerability affecting
OpenSSL—are ever likely to be widely exploited. But when such an exploit occurs, the need
for open source security becomes front-page news—as it did with the Equifax data security
breach of 2017, in which attackers exploited a vulnerability in the open source framework
Apache Struts. A contributing factor to Equifax’s breach was the company’s lack of a
comprehensive IT asset inventory. “This made it difficult, if not impossible, for Equifax to
know if vulnerabilities existed on its networks,” a report on the incident concluded. “If a
vulnerability cannot be found, it cannot be patched.”3

Managing your open source use: The DIY approach
If you use any open source at all, you need processes to manage your developers’ use of
open source components, evaluate your quality, security, and license risks, and track future
developments. Below we outline six steps to create a manual system that can help you
control your open source use and monitor your risk.

Step 1: Inventory your open source
You can’t manage what you’re not tracking. So the first step is to create a software bill of
materials (BOM), or an inventory of all open source components your teams use to develop
software.

A complete and useful open source inventory must include all open source components, the
versions in use, and download locations for each project in use or in development. It also
needs to include all dependencies, or the libraries your code is calling to, as well the libraries
those dependencies are linked to.

Consider the size of your development teams. You have a better chance to accurately track
open source use if your development team is small and in one location. If you’re using third-
party developers, you’ll need to be confident that they’ll be as diligent about code inventory
as your internal team is (or should be). Having a larger team or more teams can quickly
make the inventory process unwieldy and more prone to errors and omissions.

Can you assure developer compliance? While your development team may agree to
document their open source use as it happens, they are more likely to record it after the
fact, with inaccuracies, partial listings of components, missing information on versions or
download locations, unlisted components that entered via dependencies, and so on.

Do you know whether
the open source
components in your
applications are up to
date, with all crucial
patches applied? Will
you know tomorrow?

It’s impossible to
patch software you
don’t know you’re
using. You need full,
accurate, and current
inventory of the
open source in your
applications.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
http://heartbleed.com/

 | synopsys.com | 4

Step 2: Control your open source
Once you inventory all open source in use in your applications, you’ll want to ensure you
can control the use of additional open source components down the line. By having clear
policies and procedures in place around the introduction and documentation of new open
source components, you’ll ensure you’re controlling what enters the codebase and that it
complies with company policies. But creating these policies, maintaining them, training
developers, and staying on top of requests to approve new open source components for use
is time consuming and difficult to implement.

Even if your organization feels confident that you’re effectively tracking the open source you
have in use, you may still be worried about how to govern its continued use and whether
the written policies are enough. If you’re using a manual process, you’ll need to be sure your
developers are following the policies you’ve set. You’ll also need to evaluate whether those
policies are efficient or are instead hampering your agile DevOps SDLC.

Step 3: Ensure license compliance
If you build packaged, embedded, or commercial SaaS software, open source license
compliance is a key concern. You’ll need to determine the license types and terms for the
open source components you use and ensure they’re compatible with the packaging and
distribution of your software.

Using your BOM of open source components, you’ll want to compile detailed license texts
associated with those components so that you can flag any components not compatible
with your software’s distribution and license requirements and generate a license notices
report to include with your shipped software. Unfortunately, there’s no uniform approach to
component license documentation. You’ll need to research the licenses for each component
you’re using.

You may also want to involve your organization’s general counsel—or seek outside legal
advice—as understanding licensing terms and conditions and identifying conflicts among
various licenses can be challenging for those not familiar with legal terminology. You’ll want to
get this right the first time, especially if you build packaged or embedded software, as license
terms are often more explicit for shipped software and harder to mitigate after the fact.

Step 4: Ensure code quality
Security and licensing concerns aside, how do you know whether you’re using high-quality
open source components? Are you using a current version of the software? Is it the most
stable? Is the component actively maintained by a robust community?

If you’re taking a DIY approach, you’ll need to go to GitHub or the distribution source for
each component to research project activity and potential alternatives. However, there’s
no universal scoring mechanism to aid in comparing different components or versions. So
research can be both time consuming and subjective, a reason why many organizations
struggle with effective open source governance.

Do you know whether
you’re using high-
quality open source
components?

Can you reliably
block unwanted
components from
your code?

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/glossary/what-is-sdlc.html

 | synopsys.com | 5

Step 5: Map open source to known vulnerabilities
Your next step is to compile a list of known vulnerabilities that have been reported against
the open source components you’ve inventoried.

Most DIYers will use the U.S. government vulnerability disclosure database, the
National Vulnerability Database (NVD), as their primary source. But be aware that not all
vulnerabilities are reported to the NVD. Also, the format of NVD records often makes it
difficult to determine which versions of a given open source component are affected by a
vulnerability.

Other useful sources of information include project distribution sites, such as those
maintained by the Debian and Python projects. Security blogs and message boards, such
as the US-CERT alerts page and Google’s security blog, should also be part of your daily
vulnerability research.

“Daily” is the key word here. New vulnerabilities are uncovered literally every day. As stated
previously, the NVD reported over 17,000 vulnerabilities in 2019, over 45 per day. Mapping
your open source against known vulnerabilities must be a continuous process to be
effective.

One challenge you’ll face is the sheer volume of data that you’ll need to sift through. Others
include prioritizing which vulnerabilities you should address immediately, and which you can
safely ignore, and then mapping vulnerabilities back to their specific locations in your code.

Step 6: Manage risk and monitor for new threats
Once you’ve identified licensing, component quality, and vulnerability risks in your open
source, it’s time to prioritize those risks and address them. You’ll need to determine what
remediation needs to be done, assign the remediation work to the appropriate people, and
track the remediation process: what’s being reviewed, what’s been reviewed, what’s been
fixed, what fixes have been deferred, and what’s been patched.

Challenges you can expect to face include time and cost issues. Manual review tends
to result in remediation late in the development cycle, when the cost to fix is high and
release deadlines need to be met. Manual review processes are also incompatible with the
rapid pace and automation at the core of modern agile build and continuous integration
environments.

Agile requires that you perform all the discovery processes described above continuously
and integrate review and approval mechanisms into your SDLC. Without the assistance of
tools to automate these processes, many organizations struggle to implement efficient
mechanisms.

The job of open source management doesn’t stop when the application ships. You’ll
need to continue to monitor for vulnerabilities as long as the application is in use. Most
vulnerabilities aren’t reported for months or even years after they are introduced into a
component.

Manual review
tends to result in
remediation late in
the development
cycle.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://nvd.nist.gov
https://www.debian.org/security
https://bugs.python.org
https://www.us-cert.gov/ncas/alerts
https://security.googleblog.com/

 | synopsys.com | 6

SCA: A better, faster, stronger path to open source management
You probably have concerns about the amount of work open source management seems to entail. A manual approach to open source
management has many drawbacks. It not only requires a significant investment of time, often for dubious results, but also affects
developer productivity and leads to higher development costs.

But there’s a better alternative. Smart organizations in the business of building software know they need to simplify their open source
management, not further complicate their developers’ lives. The key is software composition analysis to automate open source
management. Managing open source with an SCA tool enables you to generate complete, accurate open source inventories, protect
against open source risks, and enforce open source use policies.

Black Duck SCA is a comprehensive solution for managing license compliance, code quality, and security risks that come from the use
of open source in applications and containers. It enables organizations to control open source across the software supply chain and
throughout the application life cycle, set and enforce open source use and security policies, automate policy enforcement with DevOps
integrations, prioritize and track open source remediation activities, and continuously monitor for new issues and alert teams if they arise.

With Black Duck SCA, it’s simple to:

• Quickly build an accurate inventory of the open source your applications include.

• Deter the risk of open source license compliance.

• Safeguard your intellectual property.

• Protect code quality.

• Find, prioritize, and fix security vulnerabilities.

• Set and enforce open source use policies.

• Automate policy enforcement with IDE and DevOps integrations.

• Prioritize and track remediation activities.

• Continuously monitor for new threats.

• Configure your open source use policies based on a comprehensive array of criteria, including license type, vulnerability severity, open
source component version, and more.

Better: Get a complete view of the open source in your codebase
Black Duck SCA provides a complete, accurate view of all open source in your applications and containers by combining four methods of
open source scan technology:

• Dependency analysis

• File system scanning

• Snippet matching

• Binary analysis

With Black Duck, you can build an open source inventory that is always up to date and accurate.

Better: Eliminate open source license noncompliance
Black Duck SCA uses the industry’s largest open source KnowledgeBase™ to identify which licenses are relevant to the open source
in your applications. The Black Duck license compliance module enables you to set policies, whitelist and blacklist, enable approval
workflows, automatically generate notices reports, and automate open source management in the SDLC.

With Black Duck, you can identify all potential license obligations for the open source in use, down to the snippet and dependency level, to
ensure open source license compliance for your applications.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/glossary/what-is-binary-code-binary-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/technology/knowledgebase.html

 | synopsys.com | 7

Faster: Continuously monitor the quality and security of the open source you use
Black Duck SCA can help your development teams avoid delays and cost overruns with risk metrics laser-focused on open source code
quality and security.

Black Duck quickly identifies known security vulnerabilities, associated licenses, and code quality risks. Black Duck operational risk
information uncovers a component’s level of risk on the initial scan and continuously monitors the component to ensure it remains up to
date and active.

• Identify component quality risks.

• Monitor for new issues in development and production.

Black Duck analyzes both source and binary code, so it can scan virtually any software, including desktop and mobile applications,
embedded system firmware, and more. And with Black Duck Security Advisories, advanced proprietary research on open source
vulnerabilities, you gain a complete picture of the security risk of the open source in your software.

• Map components to known vulnerabilities.

• Monitor for new vulnerabilities in development and production.

• Prioritize and track remediation activities.

• Scan virtually any software, with or without access to source code.

Integrations for each stage of the SDLC ensure that different scanning methods are run at the right time to provide maximum accuracy
without slowing down development.

• Rapid Scan can be used by developers in the IDE to instantly identify policy violations before building or merging into release branches.

• CI/CD tool integrations run dependency, snippet, and codeprint analysis at build time.

• Binary analysis works to scan build artifacts and dependencies entering and leaving binary repositories.

With Black Duck SCA, you can configure your open source security and use policies based on a comprehensive array of criteria, including
license type, vulnerability severity, open source component version, and more. You can also enforce development policies with automatic
workflow triggers, notifications, and bidirectional Jira integration for accelerated remediation initiation and reporting.

Stronger: Combine Black Duck SCA with Coverity SAST
Coverity SAST is a critical part of any application testing toolbox, but organizations need to further strengthen their software development
strategy with a robust SCA solution.

Boost your software development process by adding in Black Duck SCA, a comprehensive solution for managing open source security,
license compliance, and code quality in applications and containers.

Resources

1. Synopsys, 2019 Open Source Security and Risk Analysis, 2019.

2. Ibid.

3. Permanent Subcommittee on Investigations, How Equifax Neglected Cybersecurity and Suffered a Devastating Data Breach, Committee on Homeland Security and
Governmental Affairs, U.S. Senate, accessed Jan. 24, 2020.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/software-integrity/security-testing.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/2019-open-source-security-risk-analysis.html
https://www.hsgac.senate.gov/imo/media/doc/FINAL%20Equifax%20Report.pdf

Synopsys helps development teams build secure, high-quality software, minimizing risks while
maximizing speed and productivity. Synopsys, a recognized leader in application security,
provides static analysis, software composition analysis, and dynamic analysis solutions that
enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source
components, and application behavior. With a combination of industry-leading tools, services,
and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps
and throughout the software development life cycle.

For more information, go to www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

Contact us:
U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2021 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at
www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. November 2021

The Synopsys difference

 | synopsys.com | 8

http://www.synopsys.com/software
mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/copyright.html
https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	Step_3:_Identify_other_open_source_risks
	Licensing_compliance
	Component_quality
	Step_4:_Manage_risk_and_monitor_for_new_
	_bookmark2
	_GoBack
	Introduction
	Looking at unmanaged open source risk
	License risk of unmanaged open source
	Quality and maintenance risks of unmanaged open source
	Security risk of unmanaged open source

	Managing your open source use: The DIY approach
	Step 1: Inventory your open source
	Step 2: Control your open source
	Step 3: Ensure license compliance
	Step 4: Ensure code quality
	Step 5: Map open source to known vulnerabilities
	Step 6: Manage risk and monitor for new threats

	SCA: A better, faster, stronger path to open source management
	Better: Get a complete view of the open source in your codebase
	Better: Eliminate open source license noncompliance
	Faster: Continuously monitor the quality and security of the open source you use
	Stronger: Combine Black Duck SCA with Coverity SAST

