
Exploring the Threat of Malicious
Packages in the npm Ecosystem
Real-World Examples and Mitigation Strategies

 | synopsys.com | 2

A Basic Primer on CWEs, CVEs, and Malicious Packages
Malicious packages are software components or libraries that contain deliberately inserted malicious code, also known as
malware. Common Weakness Enumerations (CWEs) and Common Vulnerabilities and Exposures (CVEs) are used to identify
and classify security weaknesses and vulnerabilities in software.

CWEs are known software weaknesses. Think of them as comparable to the home protection advice that the police
might issue for your neighborhood, i.e., if you’re away from home, make sure your doors and windows are latched
and locked, don’t let mail and newspapers pile up when you’re away, and so on.

CVEs identify specific vulnerabilities and track their status. They’re like the FBI’s Most Wanted posters that used to
be displayed in post offices across the U.S.; they provide a description and warning to the public of the criminal and
their crimes.

Malicious packages are like a criminal impersonating someone you would allow in your home—a repairperson or
inspector, for instance—who presents you with falsified identification in order to gain entry.

The Danger of Malicious Packages
Software packages are a popular means to distribute open source and third-party software.
They are often pulled from an outside source through a package manager or installer
program, and typically include source code, libraries, documentation, and other files needed to
build and run the software.

A malicious package contains malware disguised as a legitimate package. It’s used to
infiltrate the software supply chain via open source libraries or third-party dependencies
and perform harmful action once activated. Once a malicious package’s malware infects a
system, it can potentially steal sensitive data, disable security software, modify or delete files,
and even take over an entire system or network, spreading to other devices to further increase
its damage.

Unlike code weaknesses and vulnerabilities—which can exist in software for months or years
without being exploited—a malicious package is almost always a direct and immediate threat.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 3

How Malicious Packages Work
Four of the most common vectors for malicious code that can impact open source software and enter the software development life
cycle (SDLC) include brandjacking, typosquatting, dependency hijacking, and dependency confusion.

Brandjacking
In brandjacking, an attacker assumes the online identity of the legitimate owner of a package, or compromises a legitimate account
by stealing or otherwise gaining access to the account’s user credentials, in order to distribute malware. One of the original types of
malicious package attacks, brandjacking is still in wide use today.

For example, the jQuery open source project has more than 4 million weekly downloads from npm, the world’s largest software registry. In
February 2022, a malicious npm package called “jquery-lh” was downloaded by more than 100 million users. Because “jQuery” was in the
package name, it looked legitimate to many people, so they downloaded the malicious package without checking its provenance.

Typosquatting
In typosquatting, an attacker publishes a malicious package with a name similar to a popular package—usually slightly misspelled—in
the hope that a downloader will unintentionally fetch the malicious version. For example, at a quick glance, there doesn’t seem to be a
difference between these commands.

$ npm install electron

$ npm install electorn

However, the first one installs a legitimate software package
from npm, while the second, which transposed two letters of the
legitimate package’s name, calls a malicious version.

Dependency hijacking and dependency
confusion
A dependency is software that is required for another piece of
software to function, making the main piece of software “dependent”
on the first. Software dependencies can be either internal or
external, and either between components of the same software
application or between different software applications.

Dependency hijacking and dependency confusion are similar types of
software supply chain attacks. Although the terms are sometimes
used interchangeably to describe any attack using software
dependencies as a vector, the difference between the two is the
manner in which the attacker gains access to the target application’s dependencies.

• In dependency hijacking, an attacker creates a package with the same name as a legitimate package and then uploads it to a public
repository. When the victim pulls in the package, the attacker’s malicious code is installed instead of the legitimate dependency. In
2018, for example, a malicious package was published to npm and added as a dependency to the widely used “event-stream” package,
leading to it being downloaded more than 8 million times in less than three months.

• In dependency confusion—also known as a substitution attack—a malicious actor publishes a package to a public registry with the
same name as a package used internally by a company, but with a higher version number. This causes an automatic download of the
bogus version as the company’s package manager attempts to keep dependencies up-to-date. Using this method in February 2021, a
researcher, after gaining permission from the various organizations targeted for his security tests, managed to breach over 35 major
companies’ internal systems, including that of Microsoft, Apple, PayPal, Shopify, Netflix, Yelp, Tesla, and Uber.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 4

The Four Major Open Source Ecosystems
Although there are four major open source ecosystems, this eBook focuses on JavaScript, the largest and most popular of them, and
npm, the default package manager for JavaScript’s runtime node.js. It should be emphasized that JavaScript and npm are not less
secure than the other three ecosystems, but their ubiquity has made them popular with malicious actors.

The other three major open source software ecosystems are Java, Python, and .NET. Each of these also has its own package
distribution and management system: Maven Central for Java, PyPI for Python, and NuGet for the .NET family. Like npm and JavaScript,
each has experienced attacks from malicious actors. Whatever the attack vector, malicious packages can pose serious risks to the
integrity and security of applications in all four open source ecosystems.

Examples of Malicious Packages in the npm Ecosystem
Attackers have used a variety of strategies to introduce malicious packages into the npm ecosystem. Here are some notable examples.

2018 2019 2021 2022
As discussed in the
dependency hijacking example,
in 2018, a popular package
called “event-stream” was
found to contain malicious
code after its original
maintainer transferred
ownership to a new maintainer.
The new maintainer introduced
a malicious dependency
designed to steal funds from
bitcoin wallets. This highlights
the importance of a project
owner vetting volunteer project
maintainers before allowing
them access to popular
projects, as well as the need
for developers to perform
thorough code reviews of
downloaded packages.

In 2019, a malicious
package called “flatmap-
stream” was discovered
to contain code capable
of stealing sensitive data
from users’ environments.
This package had more
than 2 million weekly
downloads before its
malicious intent was
discovered by a security
researcher during a
routine code review.
Again, this emphasizes
the importance of regular
code review and the
need to verify package
authenticity.

In 2021, a malicious version
of the popular “ESLint”

package was uploaded to
the npm repository following
the compromise of an ESLint

maintainer’s account. The
malicious package included

code that would execute a
backdoor on the user’s system

when the package was installed.
The compromise was apparently

made possible when the
maintainer reused the same

password on multiple accounts
and didn’t have two-factor

authentication enabled on their
npm account. This demonstrates

the need for project owners and
maintainers to be as security-

conscious as downloaders.

In 2022, ReversingLabs
researchers discovered

evidence of a widespread
typosquatting software

supply chain attack
involving malicious

JavaScript packages
offered via the npm package
manager. The npm modules

that the ReversingLabs
team identified were

collectively downloaded
more than 27,000 times.

The incident stresses
the need for software

development organizations
to use tools and processes

that assess supply chain
risks that could impact their

projects’ security.

Popular npm Packages
Some of the most popular npm packages include

• lodash: A utility library delivering consistency, modularity, performance, and extras

• express: A fast, minimalist web framework for node.js

• moment: A lightweight JavaScript date library for parsing, validating, manipulating, and formatting dates

• async: A utility module that provides straightforward, powerful functions for working with asynchronous JavaScript

• request: A simplified HTTP request client

• chalk: Terminal string styling done right

• bluebird: A fully featured promise library with a focus on innovative features and performance

• debug: A JavaScript debugging utility modeled after the Node.js core’s debugging technique

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 5

Taking Action to Identify Malicious Code and Prevent It from Entering Your
SDLC
The threat of malicious packages in npm is real and requires proactive measures to
mitigate the risks. Here are some strategies that developers can adopt.

• Verify package authenticity and names. Double-check the reputation and
trustworthiness of the package. Look for signs of fake accounts or impersonations,
and verify the legitimacy of the package’s source before installing it. Confirm the
accuracy of package names and URLs before installing them to avoid falling victim
to fake or malicious packages.

• Review package ownership and maintenance. Be cautious when using packages
that have recently changed maintainers. Thoroughly vet the new maintainers
and review any changes made to the package after the transfer. Consider using
packages with a history of reliable maintainers to minimize the risk of malicious
activity.

• Consider functionality changes. Newer versions of packages serve to patch issues and extend
functionality, but be suspicious of significant changes in functionality across different versions. Be wary
when one version of a package is accessing files or systems the previous version wasn’t.

• Engage with the npm community. Report suspicious packages or activities to the npm security team.
Collaborate with other developers by sharing information and experiences to collectively safeguard the npm
ecosystem from malicious packages.

• Use npm security tools. Available beginning with npm@6, the npm audit command submits a description of the
dependencies configured in your package to your default registry and asks for a report of known vulnerabilities.
The npm shrinkwrap command allows you to specify the exact versions of the packages you’re using, which can help prevent the
installation of a malicious package.

• Create and maintain a Software Bill of Materials (SBOM). In the fight against software supply chain attacks, having an accurate, up-to-
date SBOM that inventories open source components is critical to ensuring that your code remains high quality, compliant, and secure.
A comprehensive SBOM lists all the open source components in your applications as well as those components’ licenses, versions, and
patch status—the perfect defense against supply chain attacks, including those using malicious packages.

• Stay informed. Ensure that you have the means to be informed of newly identified malicious packages, malware, and disclosed open
source vulnerabilities. Look for newsfeeds or regularly issued advisories that provide actionable advice and details about issues
affecting open source components in your SBOM.

• Perform code reviews. Examine the code of packages before including them in your project. Look for any suspicious patterns or
unexpected behaviors that could indicate malicious activity. Review the package’s source code and check for any known vulnerabilities.

• Use an automated software composition analysis (SCA) tool. It’s all well and good to advise your team to create and maintain an
SBOM, monitor for new malicious packages, and perform detailed code reviews of package downloads, but the reality is that few
DevOps teams have the time or resources to effectively do so. An SCA tool automates the process of identification, management,
and mitigation of software security issues and allows developers to focus their energies on writing code. Such tools can evaluate
open source and third-party dependencies that have been pulled into codebases, identify malicious packages or code, and provide
remediation guidance.

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 6

Conclusion
The rise of malicious packages in npm poses a significant threat to the security and integrity of JavaScript applications. Thorough code
review, package authenticity verification, regular dependency updates, the use of npm security tools, package naming verification, and
community collaboration are all proactive steps developers can take to protect their systems.

For added protection, you should consider implementing one of the many SCA tools available today. Look for one that will automate
the process of creating and maintaining a full SBOM of open source and third-party code, will continuously monitor for and advise of
new security threats as they appear, and can be used to scan your code regularly for security, license compliance, and operational risk
issues.

By doing so, developers can safeguard their projects from malicious packages and contribute to a safer and more secure npm
ecosystem.

How Popular Is JavaScript?
The answer is very popular. Findings from the 2023 “Open Source Security and Risk Analysis”
(OSSRA) report show that 74% of the scanned codebases use JavaScript. In fact, all of the top 10
open source components were written in JavaScript.

1. jQuery: The jQuery JavaScript library

2. lodash: A modern JavaScript utility library

3. ms.js: A tiny millisecond conversion utility for Node.js and the browser

4. visionmedia-debug: A tiny JavaScript debugging tool

5. safe-buffer: A safer Node.js buffer API

6. inherits: A simple way to do classic inheritance in JavaScript

7. punycode.js: A robust Punycode converter

8. isarray: Array#isArray for older browsers

9. readable-stream: Node.js core streams for userland

10. sindresorhus/supports-color: A way to detect whether a terminal supports color

The 2023 OSSRA report also found the #1 component, the jQuery library, in nearly half—45%—of the
audited codebases.

But like in Hollywood and high school, problems sometimes accompany popularity: according to
OSSRA report audits, jQuery was also the component most likely to be vulnerable. Nearly half—47%—
of the codebases contained a vulnerable jQuery component, with the most likely vulnerability being
CVE-2020-11023 (BDSA-2020-0964), a cross-site scripting issue in jQuery versions 1.0.3 to 3.5.0. This
vulnerability could allow an attacker to inject malicious code into a website using jQuery.

 74% of the scanned codebases in
the OSSRA Report use JavaScript

 45% of the scanned codebases
in the OSSRA Report use jQuery

https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html

Synopsys provides integrated solutions that transform the way you build and deliver software,
accelerating innovation while addressing business risk. With Synopsys, your developers can
secure code as fast as they write it. Your development and DevSecOps teams can automate
testing within development pipelines without compromising velocity. And your security teams
can proactively manage risk and focus remediation efforts on what matters most to your
organization. Our unmatched expertise helps you plan and execute any security initiative. Only
Synopsys offers everything you need to build trust in your software.

For more information, go to www.synopsys.com/software.

©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at www.
synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners. May 2023

The Synopsys difference

 | synopsys.com | 7

http://www.synopsys.com/software
http://www.synopsys.com/copyright.html
http://www.synopsys.com/copyright.html
https://twitter.com/SynopsysAppsec
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

	_Int_56iKykDt
	OLE_LINK12
	_Int_b9Ws1m51
	_Int_xOwPjgp6
	OLE_LINK1
	OLE_LINK5
	OLE_LINK8
	_Int_EMP04e6D
	_Int_eT0xy3Sh
	_Int_chnKsowU
	OLE_LINK13
	OLE_LINK14
	_Int_0zTArN1p
	OLE_LINK10
	_Int_IUwxCFQB
	_Int_ZUM9zctv
	_Int_T31a7O4E
	_Int_TLbrK3zM

