
Part One: Threat Modeling

The Developer’s Guide to Securing
Mobile Applications

FACET RESOUCE
ASSETS

This eBook, part one in a series, focuses on threat modeling mobile applications. Subsequent eBooks
within the series will cover mobile secure coding guidance and integrating security into the mobile
development life cycle.

 | synopsys.com

Table of Contents

Introduction: Mobile Threat Modeling..1

Web Applications...2

Web Applications on Mobile Devices...4

Native Mobile Applications...6

Hybrid Mobile Applications..9

Cross-Platform Mobile Applications... 11

Conclusion.. 11

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 1

Mobile Threat Modeling
Threat modeling is a pen-and-paper exercise that identifies potential security risks in applications. This essential
step in mobile application security helps identify security concerns including:

•	 Assets requiring protection by an application

•	 Security controls provided by the technologies in use

•	 Controls that the application needs to implement itself

•	 Threat agents that may attempt to attack the application

Threat modeling promotes the idea of thinking like an attacker. It models security risk by documenting the
existence of—and relationships between—key components of risk. For developers, threat models identify
controls requiring implementation. For security teams, threat models identify areas requiring testing. Without
threat modeling, security activities turn into an endless and aimless bug squashing activity without a risk-based
understanding of priority and impact.

Introduction:
Entering the Mobile Ecosystem

It’s safe to say that mobile technology has become a ubiquitous aspect of our lives. You
almost certainly own a mobile device and rely on it daily. From the critical to the convenient,
we do nearly everything on mobile devices today. In fact, it’s hard to imagine how we could
live without them.

Software developers are all too familiar with the influx of mobile technology. Adapting to the
ever-changing evolution of platform features, user preferences, programming language shifts,
SDK updates, and so on—it’s hard to keep up with basic functionality in the mobile ecosystem.
Additionally, the price for failing to keep up is dramatic. Fickle users simply jump to the next
trending app that’s just a click away in the app store.

Keeping up with security is also becoming harder. It’s not something the average developer
appreciates on even the best day. Mobile requires a different threat model than other
platforms. Developers must understand this threat model to build apps securely. Failing to
build security into apps can lead to catastrophic results. Some recent examples of this include
Tinder and Uber.

Within this resource, we’ll address this challenge head-on by providing actionable guidance. We
aim to raise awareness, educate, and enable further discussion around mobile security. While
the contents below target mobile app developers, other roles coordinating with the development
organization can also benefit from this eBook. We also invite development leads, architects,
business analysts, and security people who are responsible for building secure apps to read on.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 2

Web Applications

For many years, development teams have been working with Web applications that often have a common threat
model. All Web applications have similar interfaces (e.g., protocols, languages, etc.). Many of the assets, controls,
threat agents, and attack vectors don’t change significantly between Web applications. Figure 1 presents a sample
Web application threat model diagram.

Without threat modeling, security
activities turn into an endless and
aimless bug squashing activity
without a risk-based understanding of
priority and impact.

Workstation

Browser
UI Process

Renderer (Site 1)

Renderer (Site 2)

Application
Server (Site 1)

Application
Server (Site 2)

Thick-Client
Application

A01

A01

A01

A03

A03

A03

A02

A02

C01

C04

C04

TA01 TA02
TA03

TA04

TA05

Threat Agents
TA01: Malicious App Users
TA02: Network Attackers
TA03: Malicious Websites
TA04: Malicious Thick-Client Software
TA05: User with physical access to workstation

Assets
A01: Application Data
A02: Application Functionality
A03: Cookies
A04: DOM Objects
A05: Users’ Private Data
A06: User Workstation Functionality

Controls
C01: TLS / Certificate Verification / User Cues
C02: Cache Directives
C03: Browser Process Sandboxing
C04: Same Origin Policy
C05: User Authentication / Authorization
C06: JavaScript Obfuscation
C07: Input Validation / Output Encoding

C05

C05

A02

A02

A04C04

A04C04

C01
A05

A06

C03

C06

C06Filesystem

C02C04
C04

C07

C07

Figure 1. Threat model diagram for Web applications.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 3

Table 1 presents the controls in place protecting assets from threat agents. The only controls included here are
those that Web application developers can expect to be in place universally, or controls that the Web application
developers can implement themselves.

Controls including filesystem encryption and access controls on end user workstations may be present in some
cases. However, developers cannot expect them to be in place on all workstations. That is, unless they’re creating
Intranet applications for an organization in which the IT department adds these controls to all workstations.

Controls such as certificate pinning aren’t present in some of the major browsers. At the time of this writing, these
include Internet Explorer, Edge, and Safari. Therefore, Web application developers can’t rely on these controls.

Threat agent Attack surface Target assets Controls

Malicious app users Browser •	 Application functionality •	 Javascript obfuscation
Malicious app users Browser •	 Application data
Malicious app users Application server •	 Application data

•	 Application functionality

•	 User authentication /
authorization

Network attackers Lan •	 Application data

•	 Application functionality

•	 Cookies

•	 Tls / certificate
verification / user cues

Malicious websites Browser •	 Application data

•	 Application functionality

•	 Cookies

•	 Dom objects

•	 Same origin policy

•	 Input validation /
output encoding

Malicious websites Browser •	 Users’ private data

•	 User workstation functionality

•	 Browser
process sandboxing

Malicious
thick-client software

User workstation •	 Application data

•	 Application functionality

•	 Cookies

•	 Users’ private data

•	 User workstation functionality
User with physical
access to workstation

User workstation •	 Application data

•	 Application functionality

•	 Cookies

•	 Users’ private data

•	 User workstation functionality

•	 Cache directives

Table 1. Threat matrix showing mappings between common threat model entities for Web applications.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 4

Web Applications on Mobile Devices

Web applications are accessible from mobile devices using mobile browsers. When accessing Web applications in
this manner, some controls and threat agents are different.

Figure 2 presents a threat model diagram of these differences.

Figure 2. Threat model diagram for mobile Web applications.

Mobile Device

Workstation
Browser
UI Process

Renderer (Site 1)

Renderer (Site 2)

Application
Server (Site 1)

Application
Server (Site 2)

A01
A01

A01

A03

A03

A02

A02
C01

C02

TA01

TA02
TA03

TA06

Threat Agents
TA01: Malicious App Users
TA02: Network Attackers
TA03: Malicious Websites
TA04: Malicious App (Sandboxed)
TA05: Malicious App (Root Privileges)
TA06: User with physical access to device
TA07: Malicious app on user’s workstation

Assets
A01: Application Data
A02: Application Functionality
A03: Cookies
A04: DOM Objects
A05: Users’ Private Data
A06: Device Functionality

Controls
C01: TLS / Certificate Verification / User Cues
C02: Cache Directives
C03: Browser Process Sandboxing
C04: Same Origin Policy
C05: User Authentication / Authorization
C06: App Sandboxing
C07: App Store Verification
C08: App Permissions Enforcement
C09: JavaScript Obfuscation
C10: Input Validation / Output Encoding

App StoreApp Store ClientApp
Storage

App Sandbox

Mobile AppApp
Storage

App Sandbox

App
Storage

App Sandbox

Shared
Storage

A03

C05

C05

C07

C07

TA04

C06

C06

C06

C03

A04

A04

C01
A02

A02

C04

Mobile
App

TA05

Thick Client
Interface to

Mobile Device

Filesystem

A01

A03

TA07

A05

A05

A06

C08

C08

C04

C04

C04

C04

C09

C09

C04 C10

C10

Mobile operating
systems implement
controls like sandboxing
and permission
enforcement to
limit malicious
application access

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 5

Table 2 presents the concerns that vary from the Web application threat model in Table 1.

The additional controls that are present reduce the likelihood of malicious apps accessing other applications’ data.
This includes application data stored on the device, in addition to end user data and device functionality. Authors
of mobile operating systems learned from the mistakes made years ago by authors of desktop operating systems.
For example, if a user installs a malicious thick client application on a desktop operating system, there is a chance
that it can allow full access to a user’s workstation. This is especially true if the end user is an administrator on
the workstation.

Mobile operating systems implement controls like sandboxing and permission enforcement to limit malicious
application access. Most applications don’t have administrative privileges on the device. Some mobile platforms
only allow applications approved by the platform vendor for installation on devices. However, these controls are
ineffective against malicious apps running with root privileges. For this reason, rooting/jailbreaking devices is
discouraged for users who don’t have a deep security background, and are therefore unable to identify potentially
malicious applications.

Many mobile devices allow users to back up device data to their workstations. These workstations often run
traditional desktop operating systems where these controls are not present. Thus, the concerns from the desktop
environment don’t completely disappear in the mobile ecosystem.

Threat Agent Attack Surface Target Assets Controls

Malicious app users Browser •	 Users’ private data

•	 Device functionality

•	 Browser
process sandboxing

•	 App sandboxing

•	 App
permissions enforcement

Malicious app
(sandboxed)

Mobile device •	 Application data

•	 Application functionality

•	 Cookies

•	 Users’ private data

•	 Device functionality

•	 App sandboxing

•	 App store verification

•	 App
permissions enforcement

Malicious app
(root privileges)

Mobile device •	 Application data

•	 Application functionality

•	 Cookies

•	 Users’ private data

•	 Device functionality
Malicious app on
user’s workstation

User workstation
(device backups)

•	 Application data

•	 Cookies

•	 Users’ private data

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 6

Native Mobile Applications

A native application is an application written for a mobile device using the SDK provided by the device’s operating
system vendor. As of this writing, these are applications written in Java (optionally, with some components written
in C/C++) for Android, and applications written in Objective-C, Swift, and/or C/C++ for iOS.

Figure 3 presents a threat model diagram for native mobile applications.

Figure 3. Threat model diagram for native mobile applications.

Mobile Device

Workstation

Application
Server (Site 1)

Application
Server (Site 2)

TA02 TA03

TA06

Threat Agents
TA01: Malicious App Users
TA02: Network Attackers
TA03: Malicious Servers
TA04: Malicious App (Sandboxed)
TA05: Malicious App (Root Privileges)
TA06: User with physical access to device
TA07: Malicious app on user’s workstation

Assets
A01: Application Data
A02: Application Functionality
A03: Authentication Tokens/Credentials
A04: Users’ Private Data
A05: Device Functionality

Controls
C01: User Authentication / Authorization
C02: App Sandboxing
C03: App Store Verification
C04: Binary Hardening
C05: Root/Jailbreak Detection
C06: TLS / Certificate Verification / Certificate Pinning
C07: App Permissions Enforcement
C08: Data Encryption
C09: Application Backup Configuration

App StoreApp Store ClientApp
Storage

App Sandbox

Mobile App 2App
Storage

App Sandbox

Shared
Storage

TA04

Mobile App 1App
Storage

App Sandbox

TA01

Mobile
App 3

TA05

A01

A01

A02

A02

A01 A02

A01 A02

A03

A03

A03

A03

Thick Client
Interface to

Mobile Device

Filesystem

A01

A03

TA07

A04

A05
Wearables /

Other Devices

A04

C01

C01

C02

C02

C02

C03 C04 C05 C07

C06

C09

C08

C08

C08

C08

C03 C04 C05 C07

C06

The same origin policy
is an important control
for Web applications.
However, it’s irrelevant
for native mobile apps.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 7

Table 3 presents the concerns that vary from the Web application threat model in Table 1. Note that platform-
specific controls (e.g., iOS keychain) and attacks (e.g., Android applications executing native library functionalities of
other applications) aren’t discussed here.

Threat Agent Attack Surface Target Assets Controls

Malicious App Users Mobile Device •	 Application Functionality •	 Binary Hardening

Malicious App Users Mobile Device •	 Application Data •	 Root/Jailbreak Detection

•	 Data Encryption

Network Attackers LAN •	 Application Data

•	 Application Functionality

•	 Authentication Tokens /
Credentials

•	 TLS / Certificate Verification /
Certificate Pinning

Malicious App
(Root Privileges)

Mobile Device •	 Application Data

•	 Application Functionality

•	 Authentication Tokens /
Credentials

•	 Root/Jailbreak Detection

•	 Data Encryption

User with Physical
Access to Device

Mobile Device •	 Application Data

•	 Application Functionality

•	 Authentication
Tokens / Credentials

•	 Data Encryption

Malicious App on
User’s Workstation

User Workstation
(Device Backups)

•	 Application Data

•	 Authentication Tokens /
Credentials

•	 Data Encryption

•	 Application Backup
Configuration

Table 3. Threat matrix showing new mappings between common threat model entities for native
mobile applications.

The code in native mobile applications interacts with the mobile operating system, rather than the JavaScript
runtime in a browser. As a result, some controls provided by browsers are no longer available. This architecture
enables application developers to use more effective controls than are possible in Web applications. Unfortunately,
developers can also disable security controls that Web applications cannot disable.

Certificate verification for TLS connections is different in native mobile applications than Web applications. In
Web applications, browsers often perform certificate verification. (In several cases, depending on the browser/OS
combination, the browser offloads certificate verification to an operating system component or library.) Visual cues
are also presented to users depending on whether a given site is trusted or not.

When it comes to Web application certificate verification modification, HTTP Strict Transport Security (HSTS)
and HTTP Public Key Pinning (HPKP) allow developers to modify browser behavior regarding connections and/
or pinning for their own website. However, support and adoption varies. These technologies don’t fully work
in mobile (yet).

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 8

Native mobile apps have a variety of options to modify certificate verification:

•	 Use the default certificate verification functionality provided by the platform.

•	 Perform certificate pinning.

•	 Use the certificate verification functionality provided by an arbitrary cryptographic library included with
the application.

•	 Create application-specific certificate verification functionality.

The application’s choice is hidden from the application user. The user may only see an error if the certificate
verification functionality rejects a certificate.

App stores perform some of the same functions for native mobile apps that certificate authorities perform for Web
applications. Instead of expecting a user to trust a Web application because a certificate authority verifies that it
belongs to a particular organization, the user trusts a native app because the app store verifies that it belongs to a
particular organization. Unlike certificate authorities that follow certain minimal standards, some app stores do little
or no verification of an app publisher’s true identity. This is a common problem with Android app stores.

The same origin policy is an important control for Web applications. However, it’s irrelevant for native mobile apps.
This is because each server-side application has a separate native client-side application. Application sandboxing
for native mobile apps provides some of the same protections that the same origin policy provides for Web
applications. It’s important to note that these two protections are not equivalent. For example, the same origin
policy prevents websites from being able to read responses from other origins. This is the case unless the other
origins expose cross-origin communication mechanisms.

On the other hand, application sandboxing for native mobile apps doesn’t prevent them from reading responses
from other origins. There is no concept of origin in native mobile apps. The only readable content from other origins
is content available to unauthenticated users—unless a malicious native mobile app obtains the user’s credentials
or cookies for other sites. This ability to read unauthenticated content from arbitrary sites is one of the reasons why
many organizations don’t allow mobile devices on their internal networks.

Web applications can’t verify the environment that they are running in because they don’t have sufficient access
to the underlying operating system. Therefore, they can’t attempt to detect clients that have malicious software
installed. Native mobile apps are generally sandboxed and protected from other malicious applications that aren’t
running with root privileges. They can also perform checks to identify whether the device they are running on has
been rooted or jailbroken.

If client-side functionality requires protection from reverse engineering, Web applications are limited to JavaScript
obfuscation. However, native mobile apps have a variety of advanced controls available to them. These include
obfuscation, anti-debug, and anti-tamper.

Native mobile applications also have more options available to them for encrypting locally-stored data. They can
also configure backup options to prevent sensitive data from being copied to user workstations where fewer
protections may be available.

The code in native mobile applications
interacts with the mobile operating

system, rather than the JavaScript
runtime in a browser

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 9

Hybrid Mobile Applications

A hybrid mobile application is a combination of a native mobile app and a mobile Web application. Some
components are built as a Web application. These components display in one or more WebViews inside the rest of
the application that is built as a native mobile app.

Figure 4 presents a threat model diagram for hybrid mobile applications.

Figure 4. Threat model diagram for a hybrid mobile application.

Mobile Device

Workstation

Mobile App 1
WebView

Native Component

Application
Server (Site 1)

Application
Server (Site 2)

A01
A01

A01

A03

A03

A02

C01

C02 TA02

TA03

TA06

Threat Agents
TA01: Malicious App Users
TA02: Network Attackers
TA03: Malicious Websites
TA04: Malicious App (Sandboxed)
TA05: Malicious App (Root Privileges)
TA06: User with physical access to device
TA07: Malicious app on user’s workstation

Assets
A01: Application Data
A02: Application Functionality
A03: Cookies/Authentication Tokens/Credentials
A04: DOM Objects
A05: Users’ Private Data
A06: Device Functionality

Controls
C01: TLS / Certificate Verification / Certificate Pinning
C02: Cache Directives
C03: Data Encryption
C04: Same Origin Policy
C05: User Authentication / Authorization
C06: App Sandboxing
C07: App Store Verification
C08: App Permissions Enforcement
C09: JavaScript Obfuscation
C10: Binary Hardening
C11: Root/Jailbreak Detection
C12: Application Backup Configuration
C13: Input Validation / Output Encoding
C14: Whitelist of Sites Accessible Through WebView

App StoreApp Store ClientApp
Storage

App Sandbox

Mobile AppApp
Storage

App Sandbox

App
Storage

App Sandbox

Shared
Storage

A03

C05

C05

C07

C07

TA04

C06

C06

C06

A04 C01 A02

A02

C03

Mobile
App

TA05

Thick Client
Interface to

Mobile Device

Filesystem

A01
A03

TA07

A05

A05

A06

C08

C08

C04
C04

C09

TA01

C03
C04

C04

C07 C10 C11 C12

Wearables /
Other Devices

C13

C13
C14

Since hybrid applications contain aspects
of both native mobile apps and Web

applications, the concerns and controls
from both threat models apply

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 10

Table 4 presents the concepts that are different from all previous threat models.

Threat Agent Attack Surface Target Assets Controls

Network Attackers LAN •	 Users’ Private Data

•	 Device Functionality

•	 TLS / Certificate Verification /
Certificate Pinning

Malicious Websites Mobile App •	 Application Data

•	 Cookies/Authentication
Tokens/Credentials

•	 Whitelist of Sites Accessible
Through WebView

•	 Input Validation / Output Encoding
Malicious Websites Mobile App •	 Users’ Private Data

•	 Device Functionality

•	 App Sandboxing

•	 App Permissions Enforcement

Table 4. Threat matrix showing mappings between common threat model entities for hybrid mobile apps.

Since hybrid applications contain aspects of both native mobile apps and Web applications, the concerns and
controls from both threat models apply. The threat model for native mobile apps applies to native components.
Meanwhile, the threat model for Web applications (mostly) applies to the components in the WebViews. However,
there are some differences.

•	 Some standard browser-provided security controls aren’t present. This includes the standard user cues
corresponding to certificate verification status for TLS connections. Just like native applications, hybrid
applications can often utilize certificate pinning.

•	 Although the same origin policy is present, it’s only applicable to components in WebViews. Many hybrid
applications contain a mix of locally-stored HTML/JavaScript content in the application sandbox on the mobile
device, and HTML/JavaScript content stored on a server. This complicates the same origin policy. Vulnerabilities
have been discovered in the past that are a result of locally-stored files that weren’t subjected to the required
same origin policy restrictions.

•	 The impact of unauthorized JavaScript code running in a hybrid application can be greater than unauthorized
JavaScript code running in a browser. Hybrid applications often contain native components with which
JavaScript code can interact. For example, JavaScript code in hybrid applications can often access the
application’s locally-stored data. In these cases, the same origin policy isn’t enough to protect the application’s
data and cookies, authentication tokens, and credentials from malicious websites. Thus, applications need to
implement a whitelisting mechanism to ensure that only authorized websites can be opened in its WebViews.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

 | synopsys.com | 11

Cross-Platform Mobile Applications

Most Web browsers are similar enough that Web applications can be written once and accessed from any browser.
However, when writing mobile apps using native platform APIs, organizations face a challenge. They need to
create a different mobile app for each platform (e.g., Android, iOS, etc.) that they want to support. The increase
in development costs is significant. Additionally, keeping applications on different platforms in sync, and hiring
developers with the right skills, are difficult tasks. As a result, many cross-platform development frameworks have
become popular. These frameworks allow organizations to write a single mobile app that will run on all platforms.

The cross-platform frameworks take care of most platform-specific details. This is similar to how Web browsers
take care of most platform-specific details of the underlying operating system.

There is no single threat model for cross-platform mobile apps as each framework is different. Three examples
of this include:

•	 Apache Cordova creates hybrid mobile apps in which most application code is HTML/JavaScript. This code
accesses device functionality through plugins written in native platform APIs. The application code renders in a
WebView. The threat model for hybrid applications applies here.

•	 React Native creates mobile apps in which most application code is JavaScript. A JavaScript engine interprets
this code and calls native modules that directly call platform-specific APIs. (WebViews don’t need the same
involvement as they do in Apache Cordova.) The threat model for native mobile apps mostly applies here.
However, the threat model for hybrid applications may apply if using WebViews in the application. Consider
JavaScript-specific issues in React Native applications even if foregoing WebViews.

•	 Xamarin creates mobile apps in which application code is C#. The runtime is different on Android and iOS. On
Android, the code compiles to an intermediate language that is interpreted using a Mono VM implementation for
Android. On iOS, the application code, along with Xamarin framework code, compiles to native code that runs
like a native mobile app on iOS. Regardless of the platform-specific implementation details, the threat model for
native mobile apps applies here. However, the threat model for hybrid applications may apply if the application is
using WebViews.

Conclusion: Understanding the Mobile Ecosystem

We are already familiar with Web application threat models as we’ve been using them for
many years. We need to understand how the typical Web application threat model changes for
different types of mobile applications. This allows us to understand how to protect mobile apps
and the data that they handle.

The main takeaway here is that the mobile ecosystem is different than the Web ecosystem,
and mobile app development teams need to understand the assets, controls, and threat agents
for mobile apps.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
https://www.synopsys.com/software-integrity.html

©2020 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
06/12/20.eb_DGTSTM_032720.

The Synopsys difference
Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing speed
and productivity. Synopsys, a recognized leader in static analysis, software composition analysis, and application
security testing, is uniquely positioned to apply best practices across proprietary code, open source, and the
runtime environment. With a combination of industry-leading tools, services, and expertise, only Synopsys helps
organizations maximize security and quality in DevSecOps and throughout the software development life cycle.

For more information go to www.synopsys.com/software .

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

Expert contributors:
Amit Sethi, Neil Bergman, John Kozyrakis, Corey Gagnon, Joel Scambray

Don't get lost
in the mobile
abyss.

As you travel further into the mobile ecosystem, ensure
you’re doing all you can to protect your applications.

Learn more

https://www.synopsys.com/software-integrity/security-testing/mobile-application-security-testing.html

	Introduction:
	Web Applications￼
	Web Applications on Mobile Devices￼
	Native Mobile Applications￼
	Hybrid Mobile Applications￼
	Cross-Platform Mobile Applications￼

