
What It Is and How to Deal With It

Anatomy of an Application
Security Weakness

Table of contents

What is an application security weakness? ...1

Where do application security weaknesses come from? ...1

Why don’t developers write secure code? ..2

How do attackers exploit application security weaknesses? ..2

Application security weakness case study: SQL injection ..3

What is SQL injection? ...3

How can I protect against SQL injection? ...3

How about other types of application security weaknesses? ..4

Broken authentication and session management ...4

Sensitive-data exposure ..4

Cross-site scripting (XSS) ...5

How can I teach my developers to create more secure code? ...5

Formal education, bootcamps, and e-learning ...5

What about existing application security weaknesses in my code? ..5

When should I focus on finding application security weaknesses? ...6

The benefits of in-IDE application security testing ..6

 | synopsys.com | 1

In software development, there are only
slightly more weaknesses than there are
ways to define them. But as Shakespeare
might ask, what’s in a name? That
which we call a software weakness
by any other name would
pose as much risk.

What is an application security weakness?
Vulnerabilities, weaknesses, flaws, faults, bugs, holes: They’re all names for the errors, mistakes,
and poor design choices in software and systems that attackers can exploit to get into (or get
information out of) a system. Perhaps the most commonly used term in software development
is “vulnerability.” Open Web Application Security Project (OWASP) defines a vulnerability as “a
hole or a weakness in the application, which can be a design flaw or an implementation bug,
that allows an attacker to cause harm to the stakeholders of an application.”1

Then what is a software or application security weakness? According to The MITRE Corporation, which maintains
the Common Weakness Enumeration (CWE) website detailing over 800 software errors, “Software weaknesses are
flaws, faults, bugs, vulnerabilities, and other errors in software implementation, code, design, or architecture that if
left unaddressed could result in systems and networks being vulnerable to attack.”2

As you can see, there’s a lot of overlap between the definitions of a vulnerability and a weakness. But some experts
use “vulnerability” to refer to a known instance of a weakness in a specific piece of software (i.e., the kind of
vulnerability that gets a CVE entry) and “weakness” to refer to generic issues. So to avoid confusion, for the rest of
this eBook, we’ll discuss application security weaknesses. We’ll talk about where they come from, why developers
introduce them, what makes them exploitable, how you can mitigate them, and how to keep them out of your code.

Where do application security weaknesses come from?
Most application security weaknesses result from a mistake in how software is written.3 But they can also come
from a flaw in user management or how the system responds to data input.4

Sometimes these software “errors” are not accidents but conscious decisions made by development teams.
Factors that influence these decisions include (1) the pressure on developers to quickly deliver new and

improved features customers are willing to pay for and (2) the disincentive for developers to build
security in, especially if the organization doesn’t promote a culture that makes security everyone’s

responsibility.5

Others posit that software organizations’ release schedules prevent teams from striking a
balance between achieving aspired-to security levels and hitting deadlines. This is primarily
because higher levels of security result in longer testing hours, higher development costs,
delayed deliveries, and higher selling prices.6 But why can’t developers write secure code at
the same time they are creating new or improved features? Isn’t there a way to write and test
code at the same time?

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 2

Why don’t developers write secure code?
Some argue that when developers learn to code, their instructors emphasize speed and total lines of code (LOC)
completed, in spite of whatever application security weaknesses may occur. For example, even the best coding
bootcamps follow compressed learning agendas crammed into as little as nine weeks,7 raising the question of
how much focus goes to secure coding. And code marathons that last an entire weekend obviously place all
their bets on speed and show little to no concern for coding errors or technical debt that can lead to application
security weaknesses.

So while some question the secure coding practices of coding bootcamps,8 given the paucity of data, formal
institutions of higher learning have to answer to the analysts.

Unfortunately, the statistics aren’t promising. For example, none of the top 40 ranked U.S. universities that
offer undergraduate degrees in computer science require even a single course in secure coding or secure
application development, according to Forrester.9 Internationally, things are not much better, with only one
university (Cambridge) in the top five computer science programs offering a course that contains elements of
secure code design.10

How do attackers exploit application security weaknesses?
The CWE/SANS Top 25, which highlights the most dangerous software errors from the CWE, lists SQL injection as
its No. 1 application security weakness. The OWASP Top 10 2017, which focuses on web application security risks,
also names injection risks of all types (including SQL and LDAP) as its top application security weakness.

And SQL injection has more than earned its reputation for putting applications in critical condition. For example,
Magento recently revealed that its e-commerce platform, used by more than 300,000 websites, contained an SQL
injection weakness. Attackers could potentially execute their own SQL commands to extract credit card numbers
and other personally identifiable information (PII) and transfer them to a remote server.11

So let’s take a closer look at SQL injection as a use case for how injection weaknesses typically function.

None of the top 40 ranked
U.S. universities that offer
undergraduate degrees in
computer science require
even a single course in
secure coding or secure
application development

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://cwe.mitre.org/top25/
https://www.owasp.org/index.php/Top_10-2017_Top_10

 | synopsys.com | 3

Application security weakness case study: SQL injection
What is SQL injection?
SQL is a programming language that allows users to interact with a database. Users can execute SQL statements
to perform tasks such as finding, adding, modifying, and deleting data in database tables. For example, a web
application with a search function takes a visitor’s search term, runs an SQL statement that queries the database to
find matches, and displays the results in the visitor’s browser.

SQL injection occurs when attackers insert their own malicious code into an SQL statement that the application
sends to the database. By injecting this code, they can manipulate sensitive data and even retrieve information
that lets them gain more control over the system. For example, an attacker might tell the database to retrieve
administrator usernames and passwords, or even the whole table of users.

Many developers are unaware that SQL statements can be manipulated,12 so the applications they create can be
overly trusting of user-supplied data inputs.13 Attackers can successfully exploit SQL injection weaknesses when
applications allow user text input without parameters, permit dynamic queries, don’t validate, filter, or sanitize user-
supplied data, or give hostile data direct access to the database.14

How can I protect against SQL injection?
According to leading GitHub contributors, it’s simple to keep SQL injection weaknesses out of your code.
Developers should use caution when allowing dynamic queries that include user-supplied text, using these four
primary defenses:15

1. Using prepared statements (with parameterized queries)
2. Implementing stored procedures
3. Whitelisting input validation
4. Escaping all user-supplied input

Using prepared statements

Write database queries using prepared statements with bound variables, also known
as parameterized queries. When using prepared statements, rather than creating
the final SQL statement as a single string, you define all the SQL code first. Then
you pass each parameter to the statement. This allows the database to
distinguish between code and data, regardless of user input, and
ensures that an attacker cannot change the query intent with
their own SQL commands.

SQL injection
occurs when
attackers insert their
own malicious code into

an SQL statement that
the application sends

to the database.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 4

Implementing stored procedures

Stored procedures contain predefined SQL statements saved in the database. Instead of building and executing the
same SQL statements repeatedly, you can simply call a stored procedure and pass in the required parameters. But
beware of using dynamic queries within stored procedures, because there is some chance that they could be used
for SQL injection.

Whitelisting input validation

Some parts of SQL statements, such as names of columns or tables, disallow bound variables. If you want to
allow your users to choose a column to search, for example, you should validate their input and map it to a list
of expected column names (e.g., by means of a switch statement) so that unexpected values don’t end up in
the SQL statement.

Escaping all user-supplied input

Use the proper escaping scheme to escape all user-supplied input before putting it into an SQL statement. This way,
the database won’t confuse input with developer-written SQL code. Note that this technique should be a last resort
when none of the above seem feasible. In general, OWASP recommends this technique only to retrofit legacy code
when implementing input validation isn’t cost-effective.

How about other types of application security weaknesses?
Not all application security weaknesses are created equal, and not all warrant the same level of concern. But the
other application security weaknesses listed by OWASP beneath injection weaknesses still require your attention.
So let’s take a quick look at three other representative examples and approaches for remediation.

Broken authentication and session management
This weakness allows an attacker to impersonate other users through

leaks or flaws in authentication or session management procedures (e.g.,
exposed accounts, passwords, session IDs). For example, real estate title

company First American was found to have exposed 885 million files,
including sensitive financial documents, to any user via unauthenticated

website access.16 Among other preventive steps, OWASP recommends
implementing multifactor authentication to prevent automated,

credential stuffing, brute force, and stolen credential reuse attacks, as well
as using a server-side, secure, built-in session manager to generate a new

random session ID with high entropy after login. Also, don’t put session IDs
in the URL, but do securely store them, and invalidate them after logout, idle,

and absolute timeout.

Sensitive-data exposure
This weakness is principally due to failure to encrypt sensitive data. Without properly validated SSL certificates
and encryption for mobile and cloud solutions, data in transit is exposed and subject to exploits such as man-in-
the-middle (MITM) attacks to eavesdrop and steal sensitive information. The recent breach of American Medical
Collection Agency (AMCA), which affected Quest and LabCorp customers, resulted from a successful MITM attack
on the agency’s payment pages.17 To remediate, according to OWASP, at a minimum, you should use up-to-date and
strong standards for algorithms, protocols, and keys (with proper key management), and encrypt all data in transit
with secure protocols such as TLS with perfect forward secrecy (PFS) ciphers, cipher prioritization by the server,
and secure parameters.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.techrepublic.com/article/man-in-the-middle-attacks-a-cheat-sheet/
https://www.techrepublic.com/article/man-in-the-middle-attacks-a-cheat-sheet/

 | synopsys.com | 5

Cross-site scripting (XSS)
This weakness happens when an attacker executes their own code in web browsers and in mobile
apps that display webpages (e.g., FAQs, help pages). In a recent example, a Microsoft Windows
administrative interface was found to contain several XSS flaws that could allow an
attacker to victimize a computer and access its network.18 OWASP prevention
methods include using frameworks like Ruby on Rails and ReactJS that
automatically escape XSS by design. But you must learn the limitations
of each framework’s XSS protection and appropriately handle use
cases that are not covered. OWASP also suggests that escaping
untrusted HTTP request data based on the context in the HTML
output—body, attribute, JavaScript, CSS, or URL—will resolve
reflected and stored XSS vulnerabilities.

How can I teach my developers to create more secure code?
The steps described above to prevent application security weaknesses seem straightforward and easy enough to
implement. Yet they are not currently part of most developers’ training or second nature. Developers’ first inclination
is to produce functional feature code as quickly as possible and worry about security afterward, but this is not
sustainable. Something has got to give, as security experts estimate that 5–20 application security weaknesses
exist in every 1,000 lines of software code.19 As suggested by the Forrester report, encouraging developers to
instinctively acquire secure coding skills will go a long way toward reducing the rate at which they introduce new
application security weaknesses into existing codebases.20 But how can developers acquire these skills?

Formal education, bootcamps, and e-learning
You’ve already read that none of the top 40 American universities require courses in secure coding. As for coding
bootcamps, a Google search in August 2019 showed that there were about 10 times as many results for “cyber
security bootcamp” as there were for “secure coding bootcamp.”

A third option, in the form of real-time e-learning in the integrated development environment (IDE), appears to be the
best alternative for software developers and software development managers and directors. An inline secure coding
tutorial, accessible from an IDE plugin, can show developers potential errors in their code and instantaneously
deliver clickable, brief training modules on how to remediate vulnerabilities.21

What about existing application security weaknesses in my code?
The most important benefit of secure coding training may be its capacity for keeping any new weaknesses from
being introduced into your codebase. And that might be the best you can do, because there are hundreds—if not
thousands—of unremediated flaws in commercial codebases, and it’s impossible to revisit them all. Many of these
weaknesses present low impact to confidentiality, low impact to integrity, and low availability. They’re worth keeping

Security experts estimate that 5–20
application security weaknesses exist in

every 1,000 lines of software code.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software

 | synopsys.com | 6

an eye on, but perhaps not worth fixing. You’re better off focusing your efforts on
fixing high-risk existing weaknesses and preventing new ones.

If developers spend too many cycles fixing defective code, they’ll never
ship any new code. So they need a way to remediate weaknesses
while developing. Alternately, you could accept the risk of introducing
weaknesses into your code without knowing about them—that is, until
you test your application just before deployment, when issues are more
expensive to fix.

You could also cross your fingers and hope that no one finds your
weaknesses. But it’s more likely that after deployment, threat actors
and bounty hunters will “test” your application in the wild and exploit
any weaknesses they find. Then not only will you have to pay to fix the
code—if you even find out—but you’ll also have to answer for any exposure of protected data that
happened as a result.

When should I focus on finding application security weaknesses?
The best time for developers to find and remediate application security weaknesses is when they are writing code.
But what will enable them to do this?

The “shift left” movement is a popular strategy for finding and removing application security weaknesses without
throwing a monkey wrench into the software development life cycle (SDLC). The idea is that it’s faster and less
costly to find weaknesses early in the SDLC. The earlier development teams find weaknesses, the less rework they’ll
have to do later.

For this reason, many organizations now make their developers responsible for application security.22 For
example, 41% of security decision makers say their software organizations plan to shift the responsibility for static
application security testing (SAST) into the development phase of the SDLC by 2020, on top of the 28% who have
already implemented/are implementing SAST in the development phase.23 All these organizations need tools to
support their efforts.

The benefits of in-IDE application security testing
With application security testing (AST) tools integrated into the IDE, developers can receive real-time updates
on weaknesses they’ve introduced into their code branch before check-in. Through an intelligent AST tool
seamlessly integrated into the IDE via a native plugin, developers can receive immediate security checking of their
code as they program. Then, as the tool finds coding errors, it can direct them to just-in-time training on how to
remediate the weakness.

An example of this type of solution is the Code Sight™ IDE plugin, which is part of the Synopsys Polaris Software
Integrity Platform™. Code Sight enables developers to integrate security testing into their primary development tool
in a matter of minutes.

With in-IDE application security testing and just-in-time e-learning showing your developers where the weaknesses
live in your codebase and giving them the steps for remediation, your SDLC can accelerate. You’ll produce
higher-quality software faster. In turn, you'll achieve faster time to market and make more efficient use of your
developer resources.

To learn more about the Code Sight IDE plugin with just-in-time e-learning, visit the Polaris Software
Integrity Platform page.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.synopsys.com/software-integrity/polaris.html
https://www.synopsys.com/software-integrity/polaris.html

 | synopsys.com | 7

1. OWASP, Category:Vulnerability, updated June 6, 2016.

2. The MITRE Corporation, CWE—Frequently Asked Questions (FAQ), updated April 29, 2019.

3. Latest Hacking News, Where Do Software Vulnerabilities Come From?, July 17, 2017.

4. Thomas Holt, What Are Software Vulnerabilities, and Why Are There So Many of Them?, Scientific
American, May 23, 2017.

5. Raymond Pompon, Where Do Security Vulnerabilities Come From?, Dark Reading, Sept. 22, 2017.

6. P.K. Kapur, V.S.S. Yadavali, and A.K. Shrivastava, A Comparative Study of Vulnerability Discovery Modeling
and Software Reliability Growth Modeling, Futuristic Trends on Computational Analysis and Knowledge
Management (ABLAZE), International Conference on (IEEE Xplore), Feb. 25–27, 2015.

7. SwitchUp, 2019 Best Coding Bootcamps: 50 Top Schools: Rankings, Reviews, and Courses, retrieved
July 11, 2019.

8. Steven Zimmerman, Coding Bootcamps Need to Get Real About Secure Coding Practices, Synopsys Software
Integrity Blog, April 2, 2019.

9. Amy DeMartine, Trevor Lyness, et al., Show, Don’t Tell, Your Developers How To Write Secure Code, Forrester
Research, April 19, 2019.

10. Ibid.

11. Jay Jay, Update: Critical Flaw in Magento E-commerce Platform Exposes 300,000 E-commerce Sites to SQL
Injection, SC Magazine UK, March 29, 2019.

12. The PHP Group, PHP Manual, Security, Database Security, SQL Injection, retrieved July 3, 2019.

13. Pompon, Where Do Security Vulnerabilities Come From?.

14. OWASP, OWASP Top 10 – 2017: The Ten Most Critical Web Application Security Risks, 2017.

15. Dave Wichers, Jim Manico, et al., SQL Injection Prevention Cheat Sheet, GitHub, updated March 30, 2019.

16. Brian Krebs, First American Financial Corp. Leaked Hundreds of Millions of Title Insurance Records, Krebs on
Security, May 19, 2019.

17. Scott Ikeda, Third Party Data Breach Hits Quest Diagnostics With 12 Million Confidential Patient Records
Exposed, CPO Magazine, June 11, 2019.

18. Tara Seals, Microsoft Management Console Bugs Allow Windows Takeover, Threatpost, June 18, 2019.

19. Latest Hacking News, Software Vulnerabilities.

20. DeMartine, Lyness, et al., Show, Don’t Tell.

21. Ibid.

22. Charlie Klein, How to “Shift Left” With Application Security Tools, and How Not To, Synopsys Software Integrity
Blog, Jan. 30, 2019.

23. Amy DeMartine, Stephanie Balaouras, et al., The State of Application Security, 2019, Forrester
Research, Feb. 27, 2019.

https://twitter.com/SW_Integrity
https://www.facebook.com/SynopsysSoftwareIntegrity
https://www.youtube.com/channel/UC0I_hKR1E-Ty0roBUEQN4Ww
https://www.linkedin.com/showcase/7944784/
http://www.synopsys.com/software
https://www.owasp.org/index.php/Category:Vulnerability
https://cwe.mitre.org/about/faq.html#A.1
https://latesthackingnews.com/2017/07/17/where-do-software-vulnerabilities-come-from/
https://www.scientificamerican.com/article/what-are-software-vulnerabilities-and-why-are-there-so-many-of-them/
https://www.darkreading.com/partner-perspectives/f5/where-do-security-vulnerabilities-come-from/a/d-id/1329951
https://doi.org/10.1109/ABLAZE.2015.7155000
https://doi.org/10.1109/ABLAZE.2015.7155000
https://www.switchup.org/rankings/best-coding-bootcamps
https://www.synopsys.com/blogs/software-security/coding-bootcamps-secure-coding-practices/
https://www.forrester.com/report/Show+Dont+Tell+Your+Developers+How+To+Write+Secure+Code/-/E-RES144174
https://www.scmagazineuk.com/updatecritical-flaw-magento-e-commerce-platform-exposes-300000-e-commerce-sites-sql-injection/article/1580591
https://www.scmagazineuk.com/updatecritical-flaw-magento-e-commerce-platform-exposes-300000-e-commerce-sites-sql-injection/article/1580591
https://www.php.net/manual/en/security.database.sql-injection.php#security.database.sql-injection
https://www.darkreading.com/partner-perspectives/f5/where-do-security-vulnerabilities-come-from/a/d-id/1329951
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://krebsonsecurity.com/2019/05/first-american-financial-corp-leaked-hundreds-of-millions-of-title-insurance-records/
https://www.cpomagazine.com/cyber-security/third-party-data-breach-hits-quest-diagnostics-with-12-million-confidential-patient-records-exposed/
https://www.cpomagazine.com/cyber-security/third-party-data-breach-hits-quest-diagnostics-with-12-million-confidential-patient-records-exposed/
https://threatpost.com/microsoft-management-console-bugs/145791/
https://latesthackingnews.com/2017/07/17/where-do-software-vulnerabilities-come-from/
https://www.forrester.com/report/Show+Dont+Tell+Your+Developers+How+To+Write+Secure+Code/-/E-RES144174
https://www.synopsys.com/blogs/software-security/shift-left-application-security-tools/
https://www.forrester.com/report/The+State+Of+Application+Security+2019/-/E-RES145135

©2020 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at
http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.
02/10/20. Anatomy of an application security weakness-2020.

185 Berry Street, Suite 6500

San Francisco, CA 94107 USA

U.S. Sales: 800.873.8193

International Sales: +1 415.321.5237

Email: sig-info@synopsys.com

Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing
speed and productivity. Synopsys, a recognized leader in application security, provides static analysis, software
composition analysis, and dynamic analysis solutions that enable teams to quickly find and fix vulnerabilities and
defects in proprietary code, open source components, and application behavior. With a combination of industry-
leading tools, services, and expertise, only Synopsys helps organizations optimize security and quality in DevSecOps
and throughout the software development life cycle.

For more information, go to www.synopsys.com/software.

THE SYNOPSYS DIFFERENCE

mailto:sig-info%40synopsys.com?subject=
http://www.synopsys.com/software

	_Hlk15399214
	What is an application security weakness?
	Where do application security weaknesses come from?
	Why don’t developers write secure code?
	How do attackers exploit application security weaknesses?
	Application security weakness case study: SQL injection
	What is SQL injection?
	How can I protect against SQL injection?

	How about other types of application security weaknesses?
	Broken authentication and session management
	Sensitive-data exposure
	Cross-site scripting (XSS)

	How can I teach my developers to create more secure code?
	Formal education, bootcamps, and e-learning

	What about existing application security weaknesses in my code?
	When should I focus on finding application security weaknesses?
	The benefits of in-IDE application security testing

