Embedded Software Testing

Test for vulnerabilities in a resource-constrained environment

Software defects in embedded devices can have a large impact on the reliability of systems upon which people’s lives and livelihoods depend. That is why testing is a crucial component of the embedded system development process. We understand all the tradeoffs that must be made when creating a system and know that balancing all the resources to meet aggressive timelines is no small task. This balancing act requires taking a risk-based approach to efficiently identify those defects which matter most to your business.

We stay ahead of the curve

From ATMs to automobiles to medical devices, we understand the unique resource constraints and security concerns of embedded devices due to the environment they are designed for. We also have the deep expertise required to effectively test the following constraints:

- Long lifecycles
- Power constraints
- Limited or no user interaction
- Connectivity with other devices
- Insecure physical environment
- Limitations on maintenance
- Regulatory considerations
- Insecure physical environment

We’ll help you cross the finish line

At the end of each assessment, we will conduct a read-out call with your development team to walk you through:

- Descriptions of each vulnerability
- Reproduction steps (including exploit code if applicable)
- Screenshots (if applicable)
- The likelihood a problem will be exploited based upon attacker skill and access
- The impact if a vulnerability is successfully exploited
- A standards-based risk rating that combines likelihood and impact
- One or more recommended mitigation solutions tailored to address the unique limitations of embedded devices
Our risk-based approach combines three tracks of analysis

Our embedded software testing process takes a risk-based, systems approach that covers the following three areas:

COMMUNICATION ANALYSIS

Our experts intercept and analyze communication with other local or remote components (if applicable). Depending on the device software, this may or may not be possible without gaining privileged access on the client first (e.g. installing a trusted CA certificate on the device may be necessary). This step may involve communication over interfaces such as USB, serial, Ethernet, POTS, Wi-Fi, cellular, etc. We have experience working with many communication protocols commonly used by embedded devices such as Bluetooth low energy and ZigBee, as well as proprietary protocols.

CLIENT ANALYSIS

We test high priority areas and attempt to gain access to sensitive data or functionality on the device and escalate privileges until we can perform an attack that impacts one or more business risks. The activities during this phase are highly dependent on the specific device and attacks of concern, and may include chip removal, reverse engineering/tampering with device firmware, fuzzing inputs to processes running on the device, and finding kernel-level exploits.

SERVER ANALYSIS

We analyze the server-side software using various manual and automated tools once the communication channel between the client and the server is intercepted.

The Synopsys difference

Synopsys helps development teams build secure, high-quality software, minimizing risks while maximizing speed and productivity. Synopsys, a recognized leader in application security, provides static analysis, software composition analysis, and dynamic analysis solutions that enable teams to quickly find and fix vulnerabilities and defects in proprietary code, open source components, and application behavior.

For more information about the Synopsys Software Integrity Group, visit us online at www.synopsys.com/software.

Synopsys, Inc.
185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

U.S. Sales: 800.873.8193
International Sales: +1 415.321.5237
Email: sig-info@synopsys.com

©2020 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is available at www.synopsys.com/copyright.html. All other names mentioned herein are trademarks or registered trademarks of their respective owners. January 2020