

	

	
		
				
				
			
		
		
			
				 Application Security
			
		

		
		
	

	
		
			
					
					
				
			
			
				
					 Application Security
					 | Build trust in your software
				
			
			

				
					Support
				
	
					About Us
				
	
	
	English
	日本語
	简体中文

		
	
	
	
						
				
				

				
				
						
						
						
				

				

				
		
	

	Sorry, not available in this language yet

	
	
		
			
				
	English
	日本語
	简体中文

		
	
	
	
		
				
					Platform
				
	
					Solutions
				
	
					Tools & Services
				
	
					Customer Success
				
	Partners
	
					Resources
				
	Blog
	Contact Sales

		
		

	Tools & Services

		
		
		
		Go Back

		
		

		
			Integrated AppSec Solutions

				AppSec SaaS Platform
	AppSec IDE Plug-ins
	Application Security Posture Management
	DevSecOps Integrations

		

		

		
			Software Risk Analysis

				Static Analysis (SAST)
	Software Composition Analysis (SCA)
	Interactive Analysis (IAST)
	Dynamic Analysis (DAST)
	Penetration Testing
	Protocol Fuzzing

		
		
			AppSec Program Services

				Program Strategy & Planning
	Threat & Risk Assessments
	Security Training
	Implementation & Deployment
	Security Testing Services

		
		
			M&A Due Diligence

				Open Source & Security Audits

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
		

	

	
	
							

								AppSec SaaS Platform | Integrated, cloud-based AST solution optimized for development and DevSecOps teams.
	AppSec IDE Plug-ins | Secure code as you write it in your IDE
	Software Risk Management | Manage application security programs at enterprise scale
	DevSecOps Integrations | Integrate AppSec tools into DevOps workflows

								Static Analysis (SAST) | Address security and quality defects in code as it's being developed
	Software Composition Analysis (SCA) | Secure and manage open source risks in applications and containers
	Interactive Analysis (IAST) | Automate web security testing within your DevOps pipelines
	Dynamic Analysis (DAST) | Continuous web application security testing in production.
	Penetration Testing | Identify business-critical vulnerabilities with on-demand testing expertise.
	Protocol Fuzzing | Identify defects and zero-day vulnerabilities in services and protocols

								Program Strategy & Planning | Measure, scale, and optimize your AppSec program
	Threat & Risk Assessments | Understand and address internal and external security risks
	Security Training | Equip development teams with the skills they need to produce more secure software
	Implementation & Deployment | Optimize utilization, management and deployment of AppSec tools
	Security Testing Services | On-demand AppSec testing resources and expertise

								Open Source & Security Audits | Comprehensive technical due diligence services for M&A

							
							
								

			
				Application Security index
			
		
	

	Solutions

	
		
		
		
Go Back

		
		
		Use Cases

				API Security Testing
	AppSec Consolidation
	Application Security Testing
	DevSecOps
	Software Supply Chain Security
	Manage AppSec Risk
	Cloud & Container Security
	Open Source License Compliance
	M&A Due Diligence
	Quality & Security Standards Compliance

			
	
		

		
			By Role

				Dev and DevOps Teams
	Security Teams
	Legal Teams

		

		
			By Industry

				Financial Services
	IoT & Embedded
	Automotive
	Telecommunications
	Aerospace & Defense
	Public Sector
	Medical Device

		

		

		
			
			
			
				2023 Gartner® Magic Quadrant™ for AppSec Testing
				See why Synopsys is a Leader
			
		
		
	

	
	

								API Security Testing | Manage software risks with a holistic API security testing program.
	AppSec Consolidation | Simplify your application security program
	Application Security Testing | Solutions to address security risks at all stages of the application life cycle.
	DevSecOps | Solutions to help shift security left without slowing down your development teams.
	Software Supply Chain Security | Solutions to identify and manage software supply chain risks end-to-end.
	Manage AppSec Risk | Scale your application security program without increasing complexity or adding friction.
	Cloud & Container Security | Optimize your applications for secure deployment and operation in the cloud
	Open Source License Compliance | Effective solutions for ensuring open source license compliance
	M&A Due Diligence | Identify software risks that could negatively impact the value of acquired IP.
	Quality & Security Standards Compliance | Ensure your software complies with the standards critical to customers and regulators

								Dev and DevOps Teams | Build secure software while maintaining developer productivity and pipeline velocity.
	Security Teams | Align people, processes, and technology to minimize software risk and transform your business.
	Legal Teams | Solutions to protect your IP and manage risk.

								Financial Services | Protect sensitive customer and financial data from rapidly evolving security threats.
	IoT & Embedded | Ensure your embedded and IoT devices are safe, secure, and reliable.
	Automotive | Build software security & reliability into the modern connected car.
	Telecommunications | Create seamless and safe mobile experiences, from silicon to software.
	Aerospace & Defense | Solutions for automating mission-critical development.
	Public Sector | Application security for government agencies and their suppliers.
	Medical Device | Safeguard medical devices and applications.

							

							
							
								

			
				Application Security index
			
		
	

	Customer Success

	
		
		
		
Go Back

		
			Customer Success

				Our Commitment
	Meet Your Team
	Customer Testimonials

		
		

		
			Support

				Submit a Ticket
	Documentation
	Customer Community
	Product Education

		

		
			Add-On Services

				Premium & Designated Support
	Implementation & Deployment
	AppSec Training

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
			
	

		
	

								Our Commitment | Gain the confidence to implement, deploy, and grow with your AppSec tools
	Meet Your Team | Achieve your AppSec goals with support from Synopsys experts.
	Customer Testimonials | Application security customer success stories

								Submit a Ticket | Visit our customer community for online support.
	Documentation | Comprehensive user guides and how-to articles.
								
	Customer Community | Search for answers, knowledge articles, tutorials, documentation, and more.
	Product Education | Interactive courseware designed to help implement best practices for secure code.

								Premium & Designated Support | Support with expedited response times and access to specialized technical, tactical, and operational knowledge.
	Implementation & Deployment | Discover how to best utilize, manage, and deploy your application testing tools.
	AppSec Training | Equip development teams with the skills they need to produce more secure software.

							

							
							
								

			
				Application Security index
			
		
	

	Resources

	
		
		
		
Go Back

		

	
			Application Security News

				Manage Security Risks
	Build Security into DevOps
	Secure the Software Supply Chain
	Security News & Trends

		

		
			Content Library

				Case Studies
	eBooks
	Glossary
	Reports
	Webinars
	White Papers

		

		
			Cybersecurity Research Center

				Overview
	Research

		

		
			News Room

				Press Releases

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
		

	

	
	

								Manage Security Risks News | Read the latest information on how to manage application security risks.
	Build Security into DevOps News | Get insights from Synopsys on building security into DevOps.
	Secure the Software Supply Chain News | Discover software supply chain risk management tips and best practices.
	Security News & Trends | Get an analysis of today’s application security news and trends.

								Case Studies | Application security customer stories
	eBooks | Browse the latest ebooks on software security trends and best practices
	Glossary | Glossary of Application Security, EDA & Semiconductor IP terms
	Reports | Browse the latest application security reports from Synopsys and industry-leading analysts.
	Webinars | Browse the latest webinars on application security solutions, trends, and strategies.
	White Papers | Access the latest white papers for technical knowledge on application security solutions.

								Overview | Learn more about the Synopsys Cybersecurity Research Center.
	Research | Access the latest first-party research and analysis from the Synopsys Cybersecurity Research Center.

								Press Releases | Browse our most recent news releases.

							

							
							
							

			
				Application Security index
			
		
	

Coverity Support for OWASP Mobile Top 10 (2016)

 Request a demo

 Get pricing

 	Home

	Products A-Z
	Silicon Design
	Design
	Verification Family
	Synopsys IP
	Application Security
	Manufacturing Solutions
	Simpleware 3D Image Processing
	Optical Solutions
	Photonic Solutions
	Solutions
	Aerospace & Government
	AI & Machine Learning Solutions
	Internet of Things
	HPC & Data Center
	Cloud
	5G
	Memory
	Multi-Die System Solution
	RF Design
	RISC-V
	About Us
	Newsroom
	Community
	Services
	Support
	Blogs
	Careers
	Events
	Academic & Research Alliances
	Webinars
	Partners

	Application Security

	Static Code Analysis Tools

 Coverity Version:

 Latest PDF

 	
	Java
	Kotlin
	Objective C/C++
	Swift
	Appendix

 Java

	
 Coverity Version 2023.12.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.9.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.6.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.3.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.9.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.6.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.12.0 - Java

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M09: Reverse Engineering

 	

 This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back end servers, cryptographic constants and ciphers, and intellectual property.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

 Kotlin

	
 Coverity Version 2023.12.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.9.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.6.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.6.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	
 Coverity Version 2022.9.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.12.0 - Kotlin

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

 Objective-C/C++

	
 Coverity Version 2023.12.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.9.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.6.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2023.3.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.9.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.6.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

	
 Coverity Version 2022.12.0 - Objective-C/C++

	
 Category
 	
 Description

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	

 M07: Poor Code Quality

 	

 This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that's running on the mobile device.

	

 M10: Extraneous Functionality

 	

 Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of 2-factor authentication during testing.

 Swift

	
 Coverity Version 2023.12.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2023.9.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2023.6.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2023.3.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2022.6.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2022.9.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

	
 Coverity Version 2022.12.0 - Swift

	
 Category
 	
 Description

	

 M01: Improper Platform Usage

 	

 This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system. There are several ways that mobile apps can experience this risk.

	

 M02: Insecure Data Storage

 	

 This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device's filesystem and subsequent sensitive information in data-stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developers knowledge.

	

 M03: Insecure Communication

 	

 This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	

 M05: Insufficient Cryptography

 	

 The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn't done correctly.

 Appendix: Detailed description of categories

	
				Category
				
				Description
			
	M1: Improper Platform Usage
	This category covers misuse of a platform feature or failure to use platform security controls. It might include Android intents, platform permissions, misuse of TouchID, the Keychain, or some other security control that is part of the mobile operating system.

	M2: Insecure Data Storage
	This covers insecure data storage and unintended data leakage. Insecure data storage vulnerabilities occur when development teams assume that users or malware will not have access to a mobile device’s filesystem and subsequent sensitive information in data stores on the device. Unintended data leakage (formerly side-channel data leakage) includes vulnerabilities from the OS, frameworks, compiler environment, new hardware, etc. without a developer’s knowledge.

	M3: Insecure Communication
	This covers poor handshaking, incorrect SSL versions, weak negotiation, cleartext communication of sensitive assets, etc.

	M4: Insecure Authentication
	This category captures notions of authenticating the end user or bad session management. This can include failing to identify the user at all when that should be required, failure to maintain the user’s identity when it is required, and weaknesses in session management.

	M5: Insufficient Cryptography
	The code applies cryptography to a sensitive information asset. However, the cryptography is insufficient in some way. Note that anything and everything related to TLS or SSL goes in M3. Also, if the app fails to use cryptography at all when it should, that probably belongs in M2. This category is for issues where cryptography was attempted, but it wasn’t done correctly.

	M6: Insecure Authorization
	This is a category to capture any failures in authorization (e.g., authorization decisions in the client side, forced browsing, etc.). It is distinct from authentication issues (e.g., device enrollment, user identification, etc.). If the app does not authenticate users at all in a situation where it should (e.g., granting anonymous access to some resource or service when authenticated and authorized access is required), then that is an authentication failure not an authorization failure.

	M7: Client Code Quality
	This would be the catch-all for code-level implementation problems in the mobile client. This would capture things like buffer overflows, format string vulnerabilities, and various other code-level mistakes where the solution is to rewrite some code that’s running on the mobile device.

	M8: Code Tampering
	This category covers binary patching, local resource modification, method hooking, method swizzling, and dynamic memory modification. Once the application is delivered to the mobile device, the code and data resources are resident there. An attacker can either directly modify the code, change the contents of memory dynamically, change or replace the system APIs that the application uses, or modify the application’s data and resources. This can provide the attacker a direct method of subverting the intended use of the software for personal or monetary gain.

	M9: Reverse Engineering
	This category includes analysis of the final core binary to determine its source code, libraries, algorithms, and other assets. Software such as IDA Pro, Hopper, otool, and other binary inspection tools give the attacker insight into the inner workings of the application. This may be used to exploit other nascent vulnerabilities in the application, as well as revealing information about back-end servers, cryptographic constants and ciphers, and intellectual property.

	M10: Extraneous Functionality
	Often, developers include hidden backdoor functionality or other internal development security controls that are not intended to be released into a production environment. For example, a developer may accidentally include a password as a comment in a hybrid app. Another example includes disabling of two-factor authentication during testing.

	

	

 Footer

	
			
		
		
	

	

 Corporate

 	About Us
	Careers
	ESG
	Inclusion & Diversity
	Investor Relations
	View our Office Locations
	Contact Us

 Products

 	Application Security
	Semiconductor IP
	Verification
	Design
	Silicon Engineering

 Resources

 	Solutions
	Services
	Support
	Community
	Academic & Research Alliances (SARA)
	Manage Subscriptions

 Learn

 	Blogs
	Press Releases
	Newsroom
	What is EDA?
	What is Application Security?

 Legal

 	Privacy
	Software Integrity Agreements
	Security

 Follow

 	
	
	
	
	

 Follow

 	
	
	
	
	

 ©2024 Synopsys, Inc. All Rights Reserved

