

	

	
		
				
				
			
		
		
			
				 Application Security
			
		

		
		
	

	
		
			
					
					
				
			
			
				
					 Application Security
					 | Build trust in your software
				
			
			

				
					Support
				
	
					About Us
				
	
	
	English
	日本語
	简体中文

		
	
	
	
						
				
				

				
				
						
						
						
				

				

				
		
	

	Sorry, not available in this language yet

	
	
		
			
				
	English
	日本語
	简体中文

		
	
	
	
		
				
					Platform
				
	
					Solutions
				
	
					Tools & Services
				
	
					Customer Success
				
	Partners
	
					Resources
				
	Blog
	Contact Sales

		
		

	Tools & Services

		
		
		
		Go Back

		
		

		
			Integrated AppSec Solutions

				AppSec SaaS Platform
	AppSec IDE Plug-ins
	Application Security Posture Management
	DevSecOps Integrations

		

		

		
			Software Risk Analysis

				Static Analysis (SAST)
	Software Composition Analysis (SCA)
	Interactive Analysis (IAST)
	Dynamic Analysis (DAST)
	Penetration Testing
	Protocol Fuzzing

		
		
			AppSec Program Services

				Program Strategy & Planning
	Threat & Risk Assessments
	Security Training
	Implementation & Deployment
	Security Testing Services

		
		
			M&A Due Diligence

				Open Source & Security Audits

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
		

	

	
	
							

								AppSec SaaS Platform | Integrated, cloud-based AST solution optimized for development and DevSecOps teams.
	AppSec IDE Plug-ins | Secure code as you write it in your IDE
	Software Risk Management | Manage application security programs at enterprise scale
	DevSecOps Integrations | Integrate AppSec tools into DevOps workflows

								Static Analysis (SAST) | Address security and quality defects in code as it's being developed
	Software Composition Analysis (SCA) | Secure and manage open source risks in applications and containers
	Interactive Analysis (IAST) | Automate web security testing within your DevOps pipelines
	Dynamic Analysis (DAST) | Continuous web application security testing in production.
	Penetration Testing | Identify business-critical vulnerabilities with on-demand testing expertise.
	Protocol Fuzzing | Identify defects and zero-day vulnerabilities in services and protocols

								Program Strategy & Planning | Measure, scale, and optimize your AppSec program
	Threat & Risk Assessments | Understand and address internal and external security risks
	Security Training | Equip development teams with the skills they need to produce more secure software
	Implementation & Deployment | Optimize utilization, management and deployment of AppSec tools
	Security Testing Services | On-demand AppSec testing resources and expertise

								Open Source & Security Audits | Comprehensive technical due diligence services for M&A

							
							
								

			
				Application Security index
			
		
	

	Solutions

	
		
		
		
Go Back

		
		
		Use Cases

				API Security Testing
	AppSec Consolidation
	Application Security Testing
	DevSecOps
	Software Supply Chain Security
	Manage AppSec Risk
	Cloud & Container Security
	Open Source License Compliance
	M&A Due Diligence
	Quality & Security Standards Compliance

			
	
		

		
			By Role

				Dev and DevOps Teams
	Security Teams
	Legal Teams

		

		
			By Industry

				Financial Services
	IoT & Embedded
	Automotive
	Telecommunications
	Aerospace & Defense
	Public Sector
	Medical Device

		

		

		
			
			
			
				2023 Gartner® Magic Quadrant™ for AppSec Testing
				See why Synopsys is a Leader
			
		
		
	

	
	

								API Security Testing | Manage software risks with a holistic API security testing program.
	AppSec Consolidation | Simplify your application security program
	Application Security Testing | Solutions to address security risks at all stages of the application life cycle.
	DevSecOps | Solutions to help shift security left without slowing down your development teams.
	Software Supply Chain Security | Solutions to identify and manage software supply chain risks end-to-end.
	Manage AppSec Risk | Scale your application security program without increasing complexity or adding friction.
	Cloud & Container Security | Optimize your applications for secure deployment and operation in the cloud
	Open Source License Compliance | Effective solutions for ensuring open source license compliance
	M&A Due Diligence | Identify software risks that could negatively impact the value of acquired IP.
	Quality & Security Standards Compliance | Ensure your software complies with the standards critical to customers and regulators

								Dev and DevOps Teams | Build secure software while maintaining developer productivity and pipeline velocity.
	Security Teams | Align people, processes, and technology to minimize software risk and transform your business.
	Legal Teams | Solutions to protect your IP and manage risk.

								Financial Services | Protect sensitive customer and financial data from rapidly evolving security threats.
	IoT & Embedded | Ensure your embedded and IoT devices are safe, secure, and reliable.
	Automotive | Build software security & reliability into the modern connected car.
	Telecommunications | Create seamless and safe mobile experiences, from silicon to software.
	Aerospace & Defense | Solutions for automating mission-critical development.
	Public Sector | Application security for government agencies and their suppliers.
	Medical Device | Safeguard medical devices and applications.

							

							
							
								

			
				Application Security index
			
		
	

	Customer Success

	
		
		
		
Go Back

		
			Customer Success

				Our Commitment
	Meet Your Team
	Customer Testimonials

		
		

		
			Support

				Submit a Ticket
	Documentation
	Customer Community
	Product Education

		

		
			Add-On Services

				Premium & Designated Support
	Implementation & Deployment
	AppSec Training

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
			
	

		
	

								Our Commitment | Gain the confidence to implement, deploy, and grow with your AppSec tools
	Meet Your Team | Achieve your AppSec goals with support from Synopsys experts.
	Customer Testimonials | Application security customer success stories

								Submit a Ticket | Visit our customer community for online support.
	Documentation | Comprehensive user guides and how-to articles.
								
	Customer Community | Search for answers, knowledge articles, tutorials, documentation, and more.
	Product Education | Interactive courseware designed to help implement best practices for secure code.

								Premium & Designated Support | Support with expedited response times and access to specialized technical, tactical, and operational knowledge.
	Implementation & Deployment | Discover how to best utilize, manage, and deploy your application testing tools.
	AppSec Training | Equip development teams with the skills they need to produce more secure software.

							

							
							
								

			
				Application Security index
			
		
	

	Resources

	
		
		
		
Go Back

		

	
			Application Security News

				Manage Security Risks
	Build Security into DevOps
	Secure the Software Supply Chain
	Security News & Trends

		

		
			Content Library

				Case Studies
	eBooks
	Glossary
	Reports
	Webinars
	White Papers

		

		
			Cybersecurity Research Center

				Overview
	Research

		

		
			News Room

				Press Releases

			
				
				
					2023 Gartner® Magic Quadrant™ for AppSec Testing
					See why Synopsys is a Leader
				
			
		

	

	
	

								Manage Security Risks News | Read the latest information on how to manage application security risks.
	Build Security into DevOps News | Get insights from Synopsys on building security into DevOps.
	Secure the Software Supply Chain News | Discover software supply chain risk management tips and best practices.
	Security News & Trends | Get an analysis of today’s application security news and trends.

								Case Studies | Application security customer stories
	eBooks | Browse the latest ebooks on software security trends and best practices
	Glossary | Glossary of Application Security, EDA & Semiconductor IP terms
	Reports | Browse the latest application security reports from Synopsys and industry-leading analysts.
	Webinars | Browse the latest webinars on application security solutions, trends, and strategies.
	White Papers | Access the latest white papers for technical knowledge on application security solutions.

								Overview | Learn more about the Synopsys Cybersecurity Research Center.
	Research | Access the latest first-party research and analysis from the Synopsys Cybersecurity Research Center.

								Press Releases | Browse our most recent news releases.

							

							
							
							

			
				Application Security index
			
		
	

Coverity Support for MISRA Coding Standards

 Coverity version 2023.12.0

 Request a demo

 Get pricing

 	Home

	Products A-Z
	Silicon Design
	Design
	Verification Family
	Synopsys IP
	Application Security
	Manufacturing Solutions
	Simpleware 3D Image Processing
	Optical Solutions
	Photonic Solutions
	Solutions
	Aerospace & Government
	AI & Machine Learning Solutions
	Internet of Things
	HPC & Data Center
	Cloud
	5G
	Memory
	Multi-Die System Solution
	RF Design
	RISC-V
	About Us
	Newsroom
	Community
	Services
	Support
	Blogs
	Careers
	Events
	Academic & Research Alliances
	Webinars
	Partners

	Application Security

	Static Code Analysis Tools

 MISRA C:2004 Rule Coverage

	
 	
 Supported
 	
 All
 	
 % Coverage

	

 All

 	

 130

 	

 142

 	

 91.5

	

 Required

 	

 112

 	

 124

 	

 90.3

	

 Advisory

 	

 18

 	

 18

 	

 100.0

 MISRA C:2004 Supported Rules

	
 Rule
 	
 Rule Name
 	
 Category

	

 Rule 1.1

 	

 All code shall conform to ISO/IEC 9899:1990 Programming languages C, amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/ AMD1:1995, and ISO/IEC 9899/COR2:1996.

 	

 Required

	

 Rule 2.1

 	

 Assembly language shall be encapsulated and isolated.

 	

 Required

	

 Rule 2.2

 	

 Source code shall only use /* ... */ style comments.

 	

 Required

	

 Rule 2.3

 	

 The character sequence /* shall not be used within a comment.

 	

 Required

	

 Rule 2.4

 	

 Sections of code should not be "commented out".

 	

 Advisory

	

 Rule 4.1

 	

 Only those escape sequences that are defined in the ISO C standard shall be used.

 	

 Required

	

 Rule 4.2

 	

 Trigraphs shall not be used.

 	

 Required

	

 Rule 5.1

 	

 Identifiers (internal and external) shall not rely on the significance of more than 31 characters.

 	

 Required

	

 Rule 5.2

 	

 Identifiers in an inner scope shall not use the same name as an identfier in an outer scope, and therefore hide that identfier.

 	

 Required

	

 Rule 5.3

 	

 A typedef name shall be a unique identifier.

 	

 Required

	

 Rule 5.4

 	

 A tag name shall be a unique identifier.

 	

 Required

	

 Rule 5.5

 	

 No object or function identifier with static storage duration should be reused.

 	

 Advisory

	

 Rule 5.6

 	

 No identifier in one name space should have the same spelling as an identifier in another name space, with the exception of structure member and union member names.

 	

 Advisory

	

 Rule 5.7

 	

 No identifier name should be reused.

 	

 Advisory

	

 Rule 6.1

 	

 The plain char type shall be used only for the storage and use of character values.

 	

 Required

	

 Rule 6.2

 	

 Signed and unsigned char type shall be used only for the storage and use of numeric values.

 	

 Required

	

 Rule 6.3

 	

 Typedefs that indicate size and signedness should be used in place of the basic numerical types.

 	

 Advisory

	

 Rule 6.4

 	

 Bit fields shall only be defined to be of type unsigned int or signed int.

 	

 Required

	

 Rule 6.5

 	

 Bit fields of signed type shall be at least 2 bits long.

 	

 Required

	

 Rule 7.1

 	

 Octal constants (other than zero) and octal escape sequences shall not be used.

 	

 Required

	

 Rule 8.1

 	

 Functions shall have prototype declarations and prototype shall be visible at both the function definition and call.

 	

 Required

	

 Rule 8.2

 	

 Whenever an object or function is declared or defined, its type shall be explicitly stated.

 	

 Required

	

 Rule 8.3

 	

 For each function parameter the type given in the declaration and definition shall be identical, and the return types shall also be identical.

 	

 Required

	

 Rule 8.4

 	

 If objects or functions are declared more than once their types shall be compatible.

 	

 Required

	

 Rule 8.5

 	

 There shall be no definitions of objects or functions in a header file.

 	

 Required

	

 Rule 8.6

 	

 Functions shall be declared at file scope.

 	

 Required

	

 Rule 8.7

 	

 Objects shall be defined at block scope if they are only accessed from within a single function.

 	

 Required

	

 Rule 8.8

 	

 An external object or function shall be declared in one and only one file.

 	

 Required

	

 Rule 8.9

 	

 An identifier with external linkage shall have exactly one external definition.

 	

 Required

	

 Rule 8.10

 	

 All declarations and definitions of objects or functions at file scope shall have internal linkage unless external linkage is required.

 	

 Required

	

 Rule 8.11

 	

 The static storage class specifier shall be used in definitions and declarations of objects and functions that have internal linkage.

 	

 Required

	

 Rule 8.12

 	

 When an array is declared with external linkage, its size shall be stated explicitly or defned implicitly by initialisation.

 	

 Required

	

 Rule 9.1

 	

 All automatic variables shall have been assigned a value before being used.

 	

 Required

	

 Rule 9.2

 	

 Braces shall be used to indicate and match the structure in the non-zero initialisation of arrays and structures.

 	

 Required

	

 Rule 9.3

 	

 In an enumerator list, the "=" construct shall not be used to explicitly initialise members other than the first, unless all items are explicitly initialised.

 	

 Required

	

 Rule 10.1

 	

 The value of an expression of integer type shall not be implicitly converted to a different underlying type if: (a) it is not a conversion to a wider integer type of the same signedness, or (b) the expression is complex, or (c) the expression is not constant and is a function argument, or (d) the expression is not constant and is a return expression.

 	

 Required

	

 Rule 10.2

 	

 The value of an expression of floating type shall not be implicitly converted to a different type if: (a) it is not a conversion to a wider floating type, or (b) the expression is complex, or (c) the expression is a function argument, or (d) the expression is a return expression.

 	

 Required

	

 Rule 10.3

 	

 The value of a complex expression of integer type shall only be cast to a type of the same signedness that is no wider than the underlying type of the expression.

 	

 Required

	

 Rule 10.4

 	

 The value of a complex expression of floating type shall only be cast to a floating type that is narrower or of the same size.

 	

 Required

	

 Rule 10.5

 	

 If the bitwise operators ~ and << are applied to an operand of underlying type unsigned char or unsigned short, the result shall be immediately cast to the underlying type of the operand.

 	

 Required

	

 Rule 10.6

 	

 A "U" suffix shall be applied to all constants of unsigned type.

 	

 Required

	

 Rule 11.1

 	

 Conversions shall not be performed between a pointer to a function and any type other than an integral type.

 	

 Required

	

 Rule 11.2

 	

 Conversions shall not be performed between a pointer to object and any type other than an integral type, another pointer to object type or a pointer to void.

 	

 Required

	

 Rule 11.3

 	

 A cast should not be performed between a pointer type and an integral type.

 	

 Advisory

	

 Rule 11.4

 	

 A cast should not be performed between a pointer to object type and a different pointer to object type.

 	

 Advisory

	

 Rule 11.5

 	

 A cast shall not be performed that removes any const or volatile qualification from the type addressed by a pointer.

 	

 Required

	

 Rule 12.1

 	

 Limited dependence should be placed on C's operator precedence rules in expressions.

 	

 Advisory

	

 Rule 12.2

 	

 The value of an expression shall be the same under any order of evaluation that the standard permits.

 	

 Required

	

 Rule 12.3

 	

 The sizeof operator shall not be used on expressions that contain side effects.

 	

 Required

	

 Rule 12.4

 	

 The right hand operand of a logical && or || operator shall not contain side effects.

 	

 Required

	

 Rule 12.5

 	

 The operands of a logical && or || shall be primary expressions.

 	

 Required

	

 Rule 12.6

 	

 The operands of logical operators (&&, || and !) should be effectively Boolean. Expressions that are effectively Boolean should not be used as operands to operators other than (&&, ||, !, =, ==, != and ?:).

 	

 Advisory

	

 Rule 12.7

 	

 Bitwise operators shall not be applied to operands whose underlying type is signed.

 	

 Required

	

 Rule 12.8

 	

 The right-hand operand of a shift operator shall lie between zero and one less than the width in bits of the underlying type of the left-hand operand.

 	

 Required

	

 Rule 12.9

 	

 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.

 	

 Required

	

 Rule 12.10

 	

 The comma operator shall not be used.

 	

 Required

	

 Rule 12.11

 	

 Evaluation of constant unsigned integer expressions should not lead to wrap-around.

 	

 Advisory

	

 Rule 12.12

 	

 The underlying bit representations of floating-point values shall not be used.

 	

 Required

	

 Rule 12.13

 	

 The increment (++) and decrement (--) operators should not be mixed with other operators in an expression.

 	

 Advisory

	

 Rule 13.1

 	

 Assignment operators shall not be used in expressions that yield a Boolean value.

 	

 Required

	

 Rule 13.2

 	

 Tests of a value against zero should be made explicit, unless the operand is effectively Boolean.

 	

 Advisory

	

 Rule 13.3

 	

 Floating-point expressions shall not be tested for equality or inequality.

 	

 Required

	

 Rule 13.4

 	

 The controlling expression of a for statement shall not contain any objects of floating type.

 	

 Required

	

 Rule 13.5

 	

 The three expressions of a for statement shall be concerned only with loop control.

 	

 Required

	

 Rule 13.6

 	

 Numeric variables being used within a for loop for iteration counting shall not be modified in the body of the loop.

 	

 Required

	

 Rule 13.7

 	

 Boolean operations whose results are invariant shall not be permitted.

 	

 Required

	

 Rule 14.1

 	

 There shall be no unreachable code.

 	

 Required

	

 Rule 14.2

 	

 All non-null statements shall either (a) have at least one side-effect however executed, or (b) cause control flow to change.

 	

 Required

	

 Rule 14.3

 	

 Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a comment provided that the first character following the null statement is a white-space character.

 	

 Required

	

 Rule 14.4

 	

 The goto statement shall not be used.

 	

 Required

	

 Rule 14.5

 	

 The continue statement shall not be used.

 	

 Required

	

 Rule 14.6

 	

 For any iteration statement there shall be at most one break statement used for loop termination.

 	

 Required

	

 Rule 14.7

 	

 A function shall have a single point of exit at the end of the function.

 	

 Required

	

 Rule 14.8

 	

 The statement forming the body of a switch, while, do ... while or for statement shall be a compound statement.

 	

 Required

	

 Rule 14.9

 	

 An if (expression) construct shall be followed by a compound statement. The else keyword shall be followed by either a compound statement, or another if statement.

 	

 Required

	

 Rule 14.10

 	

 All if ... else if constructs shall be terminated with an else statement.

 	

 Required

	

 Rule 15.0

 	

 The MISRA C switch syntax shall be used.

 	

 Required

	

 Rule 15.1

 	

 A switch label shall only be used when the most closely-enclosing compound statement is the body of a switch statement.

 	

 Required

	

 Rule 15.2

 	

 An unconditional break statement shall terminate every non-empty switch clause.

 	

 Required

	

 Rule 15.3

 	

 The final clause of a switch statement shall be the default clause.

 	

 Required

	

 Rule 15.4

 	

 A switch expression shall not represent a value that is effectively Boolean.

 	

 Required

	

 Rule 15.5

 	

 Every switch statement shall have at least one case clause.

 	

 Required

	

 Rule 16.1

 	

 Functions shall not be defined with variable numbers of arguments.

 	

 Required

	

 Rule 16.2

 	

 Functions shall not call themselves, either directly or indirectly.

 	

 Required

	

 Rule 16.3

 	

 Identifiers shall be given for all of the parameters in a function prototype declaration.

 	

 Required

	

 Rule 16.4

 	

 The identifiers used in the declaration and definition of a function shall be identical.

 	

 Required

	

 Rule 16.5

 	

 Functions with no parameters shall be declared and defined with the parameter list void.

 	

 Required

	

 Rule 16.6

 	

 The number of arguments passed to a function shall match the number of parameters.

 	

 Required

	

 Rule 16.7

 	

 A pointer parameter in a function prototype should be declared as pointer to const if the pointer is not used to modify the addressed object.

 	

 Advisory

	

 Rule 16.8

 	

 All exit paths from a function with non-void return type shall have an explicit return statement with an expression.

 	

 Required

	

 Rule 16.9

 	

 A function identifier shall only be used with either a preceding &, or with a parenthesised parameter list, which may be empty.

 	

 Required

	

 Rule 16.10

 	

 If a function returns error information, then that error information shall be tested.

 	

 Required

	

 Rule 17.1

 	

 Pointer arithmetic shall only be applied to pointers that address an array or array element.

 	

 Required

	

 Rule 17.2

 	

 Subtraction between pointers shall only be applied to pointers that address elements of the same array.

 	

 Required

	

 Rule 17.3

 	

 The relational operators >, >=,

	

 Required

	

 Rule 17.4

 	

 Array indexing shall be the only allowed form of pointer arithmetic.

 	

 Required

	

 Rule 17.5

 	

 The declaration of objects should contain no more than 2 levels of pointer indirection.

 	

 Advisory

	

 Rule 17.6

 	

 The address of an object with automatic storage shall not be assigned to another object that may persist after the first object has ceased to exist.

 	

 Required

	

 Rule 18.1

 	

 All structure or union types shall be complete at the end of a translation unit.

 	

 Required

	

 Rule 18.2

 	

 An object shall not be assigned to an overlapping object.

 	

 Required

	

 Rule 18.4

 	

 Unions shall not be used.

 	

 Required

	

 Rule 19.1

 	

 #include statements in a file should only be preceded by other preprocessor directives or comments.

 	

 Advisory

	

 Rule 19.2

 	

 Non-standard characters should not occur in header file names in #include directives.

 	

 Advisory

	

 Rule 19.3

 	

 The #include directive shall be followed by either a or "filename" sequence.

 	

 Required

	

 Rule 19.4

 	

 C macros shall only expand to a braced initialiser, a constant, a string literal, a parenthesised expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

 	

 Required

	

 Rule 19.5

 	

 Macros shall not be #defined or #undefd within a block.

 	

 Required

	

 Rule 19.6

 	

 #undef shall not be used.

 	

 Required

	

 Rule 19.7

 	

 A function should be used in preference to a function-like macro.

 	

 Advisory

	

 Rule 19.8

 	

 A function-like macro shall not be invoked without all of its arguments.

 	

 Required

	

 Rule 19.9

 	

 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.

 	

 Required

	

 Rule 19.10

 	

 In the definition of a function-like macro each instance of a parameter shall be enclosed in parentheses unless it is used as the operand of # or ##.

 	

 Required

	

 Rule 19.11

 	

 All macro Identifiers in preprocessor directives shall be defined before use, except in #ifdef and #ifndef preprocessor directives and the defined() operator.

 	

 Required

	

 Rule 19.12

 	

 There shall be at most one occurrence of the # or ## operators in a single macro definition.

 	

 Required

	

 Rule 19.13

 	

 The # and ## preprocessor operators should not be used.

 	

 Advisory

	

 Rule 19.14

 	

 The defined preprocessor operator shall only be used in one of the two standard forms.

 	

 Required

	

 Rule 19.15

 	

 Precautions shall be taken in order to prevent the contents of a header file being included twice.

 	

 Required

	

 Rule 19.16

 	

 Preprocessing directives shall be syntactically meaningful even when excluded by the preprocessor.

 	

 Required

	

 Rule 19.17

 	

 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef directive to which they are related.

 	

 Required

	

 Rule 20.1

 	

 Reserved identifers, macros and functions in the standard library, shall not be defined, redefined or undefined.

 	

 Required

	

 Rule 20.2

 	

 The names of standard library macros, objects and functions shall not be reused.

 	

 Required

	

 Rule 20.3

 	

 The validity of values passed to library functions shall be checked.

 	

 Required

	

 Rule 20.4

 	

 Dynamic heap memory allocation shall not be used.

 	

 Required

	

 Rule 20.5

 	

 The error indicator errno shall not be used.

 	

 Required

	

 Rule 20.6

 	

 The macro offsetof, in library , shall not be used.

 	

 Required

	

 Rule 20.7

 	

 The setjmp macro and the longjmp function shall not be used.

 	

 Required

	

 Rule 20.8

 	

 The signal handling facilities of shall not be used.

 	

 Required

	

 Rule 20.9

 	

 The input/output library shall not be used in production code.

 	

 Required

	

 Rule 20.10

 	

 The library functions atof, atoi and atol from library shall not be used.

 	

 Required

	

 Rule 20.11

 	

 The library functions abort, exit, getenv and system from library shall not be used.

 	

 Required

	

 Rule 20.12

 	

 The time handling functions of library shall not be used.

 	

 Required

 MISRA C++:2008 Rule Coverage

	
 	
 Supported
 	
 All
 	
 % Coverage

	

 All

 	

 214

 	

 228

 	

 93.9

	

 Required

 	

 196

 	

 198

 	

 99.0

	

 Advisory

 	

 18

 	

 18

 	

 100.0

	

 Document

 	

 0

 	

 12

 	

 0.0

 MISRA C++:2008 Supported Rules

	
 Rule
 	
 Rule Name
 	
 Category

	

 Rule 0-1-1

 	

 A project shall not contain unreachable code.

 	

 Required

	

 Rule 0-1-2

 	

 A project shall not contain infeasible paths.

 	

 Required

	

 Rule 0-1-3

 	

 A project shall not contain unused variables.

 	

 Required

	

 Rule 0-1-4

 	

 A project shall not contain non-volatile POD variables having only one use.

 	

 Required

	

 Rule 0-1-5

 	

 A project shall not contain unused type declarations.

 	

 Required

	

 Rule 0-1-6

 	

 A project shall not contain instances of non-volatile variables being given values that are never subsequently used.

 	

 Required

	

 Rule 0-1-7

 	

 The value returned by a function having a non-void return type that is not an overloaded operator shall always be used.

 	

 Required

	

 Rule 0-1-8

 	

 All functions with void return type shall have external side effect(s).

 	

 Required

	

 Rule 0-1-9

 	

 There shall be no dead code.

 	

 Required

	

 Rule 0-1-10

 	

 Defined functions shall be called at least once.

 	

 Required

	

 Rule 0-1-11

 	

 There shall be no unused parameters (named or unnamed) in non-virtual functions.

 	

 Required

	

 Rule 0-1-12

 	

 There shall be no unused parameters (named or unnamed) in the set of parameters for a virtual function and all the functions that override it.

 	

 Required

	

 Rule 0-2-1

 	

 An object shall not be assigned to an overlapping object.

 	

 Required

	

 Rule 0-3-2

 	

 If a function returns error information, then that error information shall be tested.

 	

 Required

	

 Rule 2-3-1

 	

 Trigraphs shall not be used.

 	

 Required

	

 Rule 2-5-1

 	

 Digraphs should not be used.

 	

 Advisory

	

 Rule 2-7-1

 	

 The character sequence /* shall not be used within a C-style comment.

 	

 Required

	

 Rule 2-7-2

 	

 Sections of code should not be "commented out" using C-style comments.

 	

 Required

	

 Rule 2-7-3

 	

 Sections of code should not be "commented out" using C++ comments.

 	

 Advisory

	

 Rule 2-10-1

 	

 Different identifiers shall be typographically unambiguous.

 	

 Required

	

 Rule 2-10-2

 	

 Identifiers declared in an inner scope shall not hide an identifier declared in an outer scope.

 	

 Required

	

 Rule 2-10-3

 	

 A typedef name (including qualification, if any) shall be a unique identifier.

 	

 Required

	

 Rule 2-10-4

 	

 A class, union or enum name (including qualification, if any) shall be a unique identifier.

 	

 Required

	

 Rule 2-10-5

 	

 The identifier name of a non-member object or function with static storage duration should not be reused.

 	

 Advisory

	

 Rule 2-10-6

 	

 If an identifier refers to a type, it shall not also refer to an object or a function in the same scope.

 	

 Required

	

 Rule 2-13-1

 	

 Only those escape sequences that are defined in ISO/IEC 14882:2003 shall be used.

 	

 Required

	

 Rule 2-13-2

 	

 Octal constants (other than zero) and octal escape sequences (other than "\0") shall not be used.

 	

 Required

	

 Rule 2-13-3

 	

 A "U" suffix shall be applied to all octal or hexadecimal integer literals of unsigned type.

 	

 Required

	

 Rule 2-13-4

 	

 Literal suffixes shall be upper case.

 	

 Required

	

 Rule 2-13-5

 	

 Narrow and wide string literals shall not be concatenated.

 	

 Required

	

 Rule 3-1-1

 	

 It shall be possible to include any header file in multiple translation units without violating the One Definition Rule.

 	

 Required

	

 Rule 3-1-2

 	

 Functions shall not be declared at block scope.

 	

 Required

	

 Rule 3-1-3

 	

 When an array is declared, its size shall either be stated explicitly or defined implicitly by initialization.

 	

 Required

	

 Rule 3-2-1

 	

 All declarations of an object or function shall have compatible types.

 	

 Required

	

 Rule 3-2-2

 	

 The One Definition Rule shall not be violated.

 	

 Required

	

 Rule 3-2-3

 	

 A type, object or function that is used in multiple translation units shall be declared in one and only one file.

 	

 Required

	

 Rule 3-2-4

 	

 An identifier with external linkage shall have exactly one external definition.

 	

 Required

	

 Rule 3-3-1

 	

 Objects or functions with external linkage shall be declared in a header file.

 	

 Required

	

 Rule 3-3-2

 	

 If a function has internal linkage then all re-declarations shall include the static storage class specifier.

 	

 Required

	

 Rule 3-4-1

 	

 An identifier declared to be an object or type shall be defined in a block that minimizes its visibility.

 	

 Required

	

 Rule 3-9-1

 	

 The types used for an object, a function return type, or a function parameter shall be token-for-token identical in all declarations and re-declarations.

 	

 Required

	

 Rule 3-9-2

 	

 Typedefs that indicate size and signedness should be used in place of the basic numerical types.

 	

 Advisory

	

 Rule 3-9-3

 	

 The underlying bit representations of floating-point values shall not be used.

 	

 Required

	

 Rule 4-5-1

 	

 Expressions with type bool shall not be used as operands to built-in operators other than the assignment operator =, the logical operators &&, ||, !, the equality operators == and !=, the unary & operator, and the conditional operator.

 	

 Required

	

 Rule 4-5-2

 	

 Expressions with type enum shall not be used as operands to built-in operators other than the subscript operator [], the assignment operator =, the equality operators == and !=, the unary & operator, and the relational operators , >=.

 	

 Required

	

 Rule 4-5-3

 	

 Expressions with type (plain) char and wchar_t shall not be used as operands to built-in operators other than the assignment operator =, the equality operators == and !=, and the unary & operator.

 	

 Required

	

 Rule 4-10-1

 	

 NULL shall not be used as an integer value.

 	

 Required

	

 Rule 4-10-2

 	

 Literal zero (0) shall not be used as the null-pointer constant.

 	

 Required

	

 Rule 5-0-1

 	

 The value of an expression shall be the same under any order of evaluation that the standard permits.

 	

 Required

	

 Rule 5-0-2

 	

 Limited dependence should be placed on C++ operator precedence rules in expressions.

 	

 Advisory

	

 Rule 5-0-3

 	

 A cvalue expression shall not be implicitly converted to a different underlying type.

 	

 Required

	

 Rule 5-0-4

 	

 An implicit integral conversion shall not change the signedness of the underlying type.

 	

 Required

	

 Rule 5-0-5

 	

 There shall be no implicit floating-integral conversions.

 	

 Required

	

 Rule 5-0-6

 	

 An implicit integral or floating-point conversion shall not reduce the size of the underlying type.

 	

 Required

	

 Rule 5-0-7

 	

 There shall be no explicit floating-integral conversions of a cvalue expression.

 	

 Required

	

 Rule 5-0-8

 	

 An explicit integral or floating-point conversion shall not increase the size of the underlying type of a cvalue expression.

 	

 Required

	

 Rule 5-0-9

 	

 An explicit integral conversion shall not change the signedness of the underlying type of a cvalue expression.

 	

 Required

	

 Rule 5-0-10

 	

 If the bitwise operators ~ and << are applied to an operand with an underlying type of unsigned char or unsigned short, the result shall be immediately cast to the underlying type of the operand.

 	

 Required

	

 Rule 5-0-11

 	

 The plain char type shall only be used for the storage and use of character values.

 	

 Required

	

 Rule 5-0-12

 	

 Signed char and unsigned char type shall only be used for the storage and use of numeric values.

 	

 Required

	

 Rule 5-0-13

 	

 The condition of an if-statement and the condition of an iteration-statement shall have type bool.

 	

 Required

	

 Rule 5-0-14

 	

 The first operand of a conditional-operator shall have type bool.

 	

 Required

	

 Rule 5-0-15

 	

 Array indexing shall be the only allowed form of pointer arithmetic.

 	

 Required

	

 Rule 5-0-16

 	

 A pointer operand and any pointer resulting from pointer arithmetic using that operand shall both address elements of the same array.

 	

 Required

	

 Rule 5-0-17

 	

 Subtraction between pointers shall only be applied to pointers that address elements of the same array.

 	

 Required

	

 Rule 5-0-18

 	

 The relational operators >, >=, < and

	

 Required

	

 Rule 5-0-19

 	

 The declaration of objects shall contain no more than two levels of pointer indirection.

 	

 Required

	

 Rule 5-0-20

 	

 Non-constant operands to a binary bitwise operator shall have the same underlying type.

 	

 Required

	

 Rule 5-0-21

 	

 Bitwise operators shall only be applied to operands of unsigned underlying type.

 	

 Required

	

 Rule 5-2-1

 	

 Each operand of a logical && or || shall be a postfix-expression.

 	

 Required

	

 Rule 5-2-2

 	

 A pointer to a virtual base class shall only be cast to a pointer to a derived class by means of dynamic_cast.

 	

 Required

	

 Rule 5-2-3

 	

 Casts from a base class to a derived class should not be performed on polymorphic types.

 	

 Advisory

	

 Rule 5-2-4

 	

 C-style casts (other than void casts) and functional notation casts (other than explicit constructor calls) shall not be used.

 	

 Required

	

 Rule 5-2-5

 	

 A cast shall not remove any const or volatile qualification from the type of a pointer or reference.

 	

 Required

	

 Rule 5-2-6

 	

 A cast shall not convert a pointer to a function to any other pointer type, including a pointer to function type.

 	

 Required

	

 Rule 5-2-7

 	

 An object with pointer type shall not be converted to an unrelated pointer type, either directly or indirectly.

 	

 Required

	

 Rule 5-2-8

 	

 An object with integer type or pointer to void type shall not be converted to an object with pointer type.

 	

 Required

	

 Rule 5-2-9

 	

 A cast should not convert a pointer type to an integral type.

 	

 Advisory

	

 Rule 5-2-10

 	

 The increment (++) and decrement (--) operators should not be mixed with other operators in an expression.

 	

 Advisory

	

 Rule 5-2-11

 	

 The comma operator, && operator and the || operator shall not be overloaded.

 	

 Required

	

 Rule 5-2-12

 	

 An identifier with array type passed as a function argument shall not decay to a pointer.

 	

 Required

	

 Rule 5-3-1

 	

 Each operand of the ! operator, the logical && or the logical || operators shall have type bool.

 	

 Required

	

 Rule 5-3-2

 	

 The unary minus operator shall not be applied to an expression whose underlying type is unsigned.

 	

 Required

	

 Rule 5-3-3

 	

 The unary & operator shall not be overloaded.

 	

 Required

	

 Rule 5-3-4

 	

 Evaluation of the operand to the sizeof operator shall not contain side effects.

 	

 Required

	

 Rule 5-8-1

 	

 The right-hand operand of a shift operator shall lie between zero and one less than the width in bits of the underlying type of the left-hand operand.

 	

 Required

	

 Rule 5-14-1

 	

 The right hand operand of a logical && or || operator shall not contain side effects.

 	

 Required

	

 Rule 5-18-1

 	

 The comma operator shall not be used.

 	

 Required

	

 Rule 5-19-1

 	

 Evaluation of constant unsigned integer expressions should not lead to wrap-around.

 	

 Advisory

	

 Rule 6-2-1

 	

 Assignment operators shall not be used in sub-expressions.

 	

 Required

	

 Rule 6-2-2

 	

 Floating-point expressions shall not be directly or indirectly tested for equality or inequality.

 	

 Required

	

 Rule 6-2-3

 	

 Before preprocessing, a null statement shall only occur on a line by itself; it may be followed by a comment provided that the first character following the null statement is a white-space character.

 	

 Required

	

 Rule 6-3-1

 	

 The statement forming the body of a switch, while, do ... while or for statement shall be a compound statement.

 	

 Required

	

 Rule 6-4-1

 	

 An if (condition) construct shall be followed by a compound statement. The else keyword shall be followed by either a compound statement, or another if statement.

 	

 Required

	

 Rule 6-4-2

 	

 All if ... else if constructs shall be terminated with an else statement.

 	

 Required

	

 Rule 6-4-3

 	

 A switch statement shall be a well-formed switch statement.

 	

 Required

	

 Rule 6-4-4

 	

 A switch-label shall only be used when the most closely-enclosing compound statement is the body of a switch statement.

 	

 Required

	

 Rule 6-4-5

 	

 An unconditional throw or break statement shall terminate every non-empty switch-clause.

 	

 Required

	

 Rule 6-4-6

 	

 The final clause of a switch statement shall be the default-clause.

 	

 Required

	

 Rule 6-4-7

 	

 The condition of a switch statement shall not have bool type.

 	

 Required

	

 Rule 6-4-8

 	

 Every switch statement shall have at least one case clause.

 	

 Required

	

 Rule 6-5-1

 	

 A for loop shall contain a single loop-counter which shall not have floating type.

 	

 Required

	

 Rule 6-5-2

 	

 If loop-counter is not modified by -- or ++, then within condition, the loop-counter shall only be used as an operand to or >=.

 	

 Required

	

 Rule 6-5-3

 	

 The loop-counter shall not be modified within condition or statement.

 	

 Required

	

 Rule 6-5-4

 	

 The loop-counter shall be modified by one of: --, ++, -=n, or +=n; where n remains constant for the duration of the loop.

 	

 Required

	

 Rule 6-5-5

 	

 A loop-control-variable other than loop-counter shall not be modified within condition or expression.

 	

 Required

	

 Rule 6-5-6

 	

 A loop-control-variable other than the loop-counter which is modified in statement shall have type bool.

 	

 Required

	

 Rule 6-6-1

 	

 Any label referenced by a goto statement shall be declared in the same block, or in any block enclosing the goto statement.

 	

 Required

	

 Rule 6-6-2

 	

 The goto statement shall jump to a label declared later in the same function.

 	

 Required

	

 Rule 6-6-3

 	

 The continue statement shall only be used within a well-formed for loop.

 	

 Required

	

 Rule 6-6-4

 	

 For any iteration statement there shall be no more than one break or goto statement used for loop termination.

 	

 Required

	

 Rule 6-6-5

 	

 A function shall have a single point of exit at the end of the function.

 	

 Required

	

 Rule 7-1-1

 	

 A variable that is not modified shall be const qualified.

 	

 Required

	

 Rule 7-1-2

 	

 A pointer or reference parameter in a function shall be declared as pointer to const or reference to const if the corresponding object is not modified.

 	

 Required

	

 Rule 7-2-1

 	

 An expression with enum underlying type shall only have values corresponding to the enumerators of the enumeration.

 	

 Required

	

 Rule 7-3-1

 	

 Global namespace shall only contain main, namespace declarations and extern declarations.

 	

 Required

	

 Rule 7-3-2

 	

 The identifier main shall not be used for a function other than the global function main.

 	

 Required

	

 Rule 7-3-3

 	

 There shall be no unnamed namespaces in header files.

 	

 Required

	

 Rule 7-3-4

 	

 using-directives shall not be used.

 	

 Required

	

 Rule 7-3-5

 	

 Multiple declarations for an identifier in the same namespace shall not straddle a using-declaration for that identifier.

 	

 Required

	

 Rule 7-3-6

 	

 using-directives and using-declarations (excluding class scope or function scope using-declarations) shall not be used in header files.

 	

 Required

	

 Rule 7-4-2

 	

 Assembler instructions shall only be introduced using the asm declaration.

 	

 Required

	

 Rule 7-4-3

 	

 Assembly language shall be encapsulated and isolated.

 	

 Required

	

 Rule 7-5-1

 	

 A function shall not return a reference or a pointer to an automatic variable (including parameters), defined within the function.

 	

 Required

	

 Rule 7-5-2

 	

 The address of an object with automatic storage shall not be assigned to another object that may persist after the first object has ceased to exist.

 	

 Required

	

 Rule 7-5-3

 	

 A function shall not return a reference or a pointer to a parameter that is passed by reference or const reference.

 	

 Required

	

 Rule 7-5-4

 	

 Functions should not call themselves, either directly or indirectly.

 	

 Advisory

	

 Rule 8-0-1

 	

 An init-declarator-list or a member-declarator-list shall consist of a single init-declarator or member-declarator respectively.

 	

 Required

	

 Rule 8-3-1

 	

 Parameters in an overriding virtual function shall either use the same default arguments as the function they override, or else shall not specify any default arguments.

 	

 Required

	

 Rule 8-4-1

 	

 Functions shall not be defined using the ellipsis notation.

 	

 Required

	

 Rule 8-4-2

 	

 The identifiers used for the parameters in a redeclaration of a function shall be identical to those in the declaration.

 	

 Required

	

 Rule 8-4-3

 	

 All exit paths from a function with non-void return type shall have an explicit return statement with an expression.

 	

 Required

	

 Rule 8-4-4

 	

 A function identifier shall either be used to call the function or it shall be preceded by &.

 	

 Required

	

 Rule 8-5-1

 	

 All variables shall have a defined value before they are used.

 	

 Required

	

 Rule 8-5-2

 	

 Braces shall be used to indicate and match the structure in the non-zero initialisation of arrays and structures.

 	

 Required

	

 Rule 8-5-3

 	

 In an enumerator list, the = construct shall not be used to explicitly initialize members other than the first, unless all items are explicitly initialized.

 	

 Required

	

 Rule 9-3-1

 	

 const member functions shall not return non-const pointers or references to class-data.

 	

 Required

	

 Rule 9-3-2

 	

 Member functions shall not return non-const handles to class-data.

 	

 Required

	

 Rule 9-3-3

 	

 If a member function can be made static then it shall be made static, otherwise if it can be made const then it shall be made const.

 	

 Required

	

 Rule 9-5-1

 	

 Unions shall not be used.

 	

 Required

	

 Rule 9-6-2

 	

 Bit-fields shall be either bool type or an explicitly unsigned or signed integral type.

 	

 Required

	

 Rule 9-6-3

 	

 Bit-fields shall not have enum type.

 	

 Required

	

 Rule 9-6-4

 	

 Named bit-fields with signed integer type shall have a length of more than one bit.

 	

 Required

	

 Rule 10-1-1

 	

 Classes should not be derived from virtual bases.

 	

 Advisory

	

 Rule 10-1-2

 	

 A base class shall only be declared virtual if it is used in a diamond hierarchy.

 	

 Required

	

 Rule 10-1-3

 	

 An accessible base class shall not be both virtual and non-virtual in the same hierarchy.

 	

 Required

	

 Rule 10-2-1

 	

 All accessible entity names within a multiple inheritance hierarchy should be unique.

 	

 Advisory

	

 Rule 10-3-1

 	

 There shall be no more than one definition of each virtual function on each path through the inheritance hierarchy.

 	

 Required

	

 Rule 10-3-2

 	

 Each overriding virtual function shall be declared with the virtual keyword.

 	

 Required

	

 Rule 10-3-3

 	

 A virtual function shall only be overridden by a pure virtual function if it is itself declared as pure virtual.

 	

 Required

	

 Rule 11-0-1

 	

 Member data in non-POD class types shall be private.

 	

 Required

	

 Rule 12-1-1

 	

 An object's dynamic type shall not be used from the body of its constructor or destructor.

 	

 Required

	

 Rule 12-1-2

 	

 All constructors of a class should explicitly call a constructor for all of its immediate base classes and all virtual base classes.

 	

 Advisory

	

 Rule 12-1-3

 	

 All constructors that are callable with a single argument of fundamental type shall be declared explicit.

 	

 Required

	

 Rule 12-8-1

 	

 A copy constructor shall only initialize its base classes and the non-static members of the class of which it is a member.

 	

 Required

	

 Rule 12-8-2

 	

 The copy assignment operator shall be declared protected or private in an abstract class.

 	

 Required

	

 Rule 14-5-1

 	

 A non-member generic function shall only be declared in a namespace that is not an associated namespace.

 	

 Required

	

 Rule 14-5-2

 	

 A copy constructor shall be declared when there is a template constructor with a single parameter that is a generic parameter.

 	

 Required

	

 Rule 14-5-3

 	

 A copy assignment operator shall be declared when there is a template assignment operator with a parameter that is a generic parameter.

 	

 Required

	

 Rule 14-6-1

 	

 In a class template with a dependent base, any name that may be found in that dependent base shall be referred to using a qualified-id or this->.

 	

 Required

	

 Rule 14-6-2

 	

 The function chosen by overload resolution shall resolve to a function declared previously in the translation unit.

 	

 Required

	

 Rule 14-7-1

 	

 All class templates, function templates, class template member functions and class template static members shall be instantiated at least once.

 	

 Required

	

 Rule 14-7-2

 	

 For any given template specialization, an explicit instantiation of the template with the template-arguments used in the specialization shall not render the program ill-formed.

 	

 Required

	

 Rule 14-7-3

 	

 All partial and explicit specializations for a template shall be declared in the same file as the declaration of their primary template.

 	

 Required

	

 Rule 14-8-1

 	

 Overloaded function templates shall not be explicitly specialized.

 	

 Required

	

 Rule 14-8-2

 	

 The viable function set for a function call should either contain no function specializations, or only contain function specializations.

 	

 Advisory

	

 Rule 15-0-2

 	

 An exception object should not have pointer type.

 	

 Advisory

	

 Rule 15-0-3

 	

 Control shall not be transferred into a try or catch block using a goto or a switch statement.

 	

 Required

	

 Rule 15-1-1

 	

 The assignment-expression of a throw statement shall not itself cause an exception to be thrown.

 	

 Required

	

 Rule 15-1-2

 	

 NULL shall not be thrown explicitly.

 	

 Required

	

 Rule 15-1-3

 	

 An empty throw (throw;) shall only be used in the compound-statement of a catch handler.

 	

 Required

	

 Rule 15-3-1

 	

 Exceptions shall be raised only after start-up and before termination of the program.

 	

 Required

	

 Rule 15-3-2

 	

 There should be at least one exception handler to catch all otherwise unhandled exceptions.

 	

 Advisory

	

 Rule 15-3-3

 	

 Handlers of a function-try-block implementation of a class constructor or destructor shall not reference nonstatic members from this class or its bases.

 	

 Required

	

 Rule 15-3-4

 	

 Each exception explicitly thrown in the code shall have a handler of a compatible type in all call paths that could lead to that point.

 	

 Required

	

 Rule 15-3-5

 	

 A class type exception shall always be caught by reference.

 	

 Required

	

 Rule 15-3-6

 	

 Where multiple handlers are provided in a single try-catch statement or function-try-block for a derived class and some or all of its bases, the handlers shall be ordered most-derived to base class.

 	

 Required

	

 Rule 15-3-7

 	

 Where multiple handlers are provided in a single try-catch statement or function-try-block, any ellipsis (catch-all) handler shall occur last.

 	

 Required

	

 Rule 15-4-1

 	

 If a function is declared with an exception-specification, then all declarations of the same function (in other translation units) shall be declared with the same set of type-ids.

 	

 Required

	

 Rule 15-5-1

 	

 A class destructor shall not exit with an exception.

 	

 Required

	

 Rule 15-5-2

 	

 Where a function's declaration includes an exception specification, the function shall only be capable of throwing exceptions of the indicated type(s).

 	

 Required

	

 Rule 15-5-3

 	

 The terminate() function shall not be called implicitly.

 	

 Required

	

 Rule 16-0-1

 	

 #include directives in a file shall only be preceded by other preprocessor directives or comments.

 	

 Required

	

 Rule 16-0-2

 	

 Macros shall only be #defined or #undefd in the global namespace.

 	

 Required

	

 Rule 16-0-3

 	

 #undef shall not be used.

 	

 Required

	

 Rule 16-0-4

 	

 Function-like macros shall not be defined.

 	

 Required

	

 Rule 16-0-5

 	

 Arguments to a function-like macro shall not contain tokens that look like preprocessing directives.

 	

 Required

	

 Rule 16-0-6

 	

 In the definition of a function-like macro, each instance of a parameter shall be enclosed in parentheses, unless it is used as the operand of # or ##.

 	

 Required

	

 Rule 16-0-7

 	

 Undefined macro identifiers shall not be used in #if or #elif preprocessor directives, except as operands to the defined operator.

 	

 Required

	

 Rule 16-0-8

 	

 If the # token appears as the first token on a line, then it shall be immediately followed by a preprocessing token.

 	

 Required

	

 Rule 16-1-1

 	

 The defined preprocessor operator shall only be used in one of the two standard forms.

 	

 Required

	

 Rule 16-1-2

 	

 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if or #ifdef directive to which they are related.

 	

 Required

	

 Rule 16-2-1

 	

 The pre-processor shall only be used for file inclusion and include guards.

 	

 Required

	

 Rule 16-2-2

 	

 C++ macros shall only be used for include guards, type qualifiers, or storage class specifiers.

 	

 Required

	

 Rule 16-2-3

 	

 Include guards shall be provided.

 	

 Required

	

 Rule 16-2-4

 	

 The ', ", /* or // characters shall not occur in a header file name.

 	

 Required

	

 Rule 16-2-5

 	

 The \ character should not occur in a header file name.

 	

 Advisory

	

 Rule 16-2-6

 	

 The #include directive shall be followed by either a or "filename" sequence.

 	

 Required

	

 Rule 16-3-1

 	

 There shall be at most one occurrence of the # or ## operators in a single macro definition.

 	

 Required

	

 Rule 16-3-2

 	

 The # and ## operators should not be used.

 	

 Advisory

	

 Rule 17-0-1

 	

 Reserved identifiers, macros and functions in the standard library shall not be defined, redefined or undefined.

 	

 Required

	

 Rule 17-0-2

 	

 The names of standard library macros and objects shall not be reused.

 	

 Required

	

 Rule 17-0-3

 	

 The names of standard library functions shall not be overridden.

 	

 Required

	

 Rule 17-0-5

 	

 The setjmp macro and the longjmp function shall not be used.

 	

 Required

	

 Rule 18-0-1

 	

 C++ libraries with corresponding C compatible libraries must use the C++ version.

 	

 Required

	

 Rule 18-0-2

 	

 The library functions atof, atoi and atol from library shall not be used.

 	

 Required

	

 Rule 18-0-3

 	

 The library functions abort, exit, getenv and system from library shall not be used.

 	

 Required

	

 Rule 18-0-4

 	

 The time handling functions of library shall not be used.

 	

 Required

	

 Rule 18-0-5

 	

 The unbounded functions of library shall not be used.

 	

 Required

	

 Rule 18-2-1

 	

 The macro offsetof shall not be used.

 	

 Required

	

 Rule 18-4-1

 	

 Dynamic heap memory allocation shall not be used.

 	

 Required

	

 Rule 18-7-1

 	

 The signal handling facilities of shall not be used.

 	

 Required

	

 Rule 19-3-1

 	

 The error indicator errno shall not be used.

 	

 Required

	

 Rule 27-0-1

 	

 The stream input/output library shall not be used.

 	

 Required

 MISRA C:2012 Rule Coverage

	
 	
 Supported
 	
 All
 	
 % Coverage

	

 All

 	

 182

 	

 173

 	

 105.2

	

 Mandatory

 	

 16

 	

 16

 	

 100.0

	

 Required

 	

 126

 	

 118

 	

 106.8

	

 Advisory

 	

 40

 	

 39

 	

 102.6

 MISRA C:2012 Supported Rules

	
 Rule
 	
 Rule Name
 	
 Category

	

 Directive 4.3

 	

 Assembly language shall be encapsulated and isolated.

 	

 Required

	

 Directive 4.4

 	

 Sections of code should not be "commented out".

 	

 Advisory

	

 Directive 4.5

 	

 Identifiers in the same name space with overlapping visibility should be typographically unambiguous.

 	

 Advisory

	

 Directive 4.6

 	

 Typedefs that indicate size and signedness should be used in place of the basic numerical types.

 	

 Advisory

	

 Directive 4.7

 	

 If a function returns error information, then that error information shall be tested.

 	

 Required

	

 Directive 4.8

 	

 If a pointer to a structure or union is never dereferenced within a Translation Unit, then the implementation of the object should be hidden.

 	

 Advisory

	

 Directive 4.9

 	

 A function should be used in preference to a function-like macro where they are interchangeable.

 	

 Advisory

	

 Directive 4.10

 	

 Precautions shall be taken in order to prevent the contents of a header file being included more than once.

 	

 Required

	

 Directive 4.11

 	

 The validity of values passed to library functions shall be checked.

 	

 Required

	

 Directive 4.12

 	

 Dynamic memory allocation shall not be used.

 	

 Required

	

 Directive 4.13

 	

 Functions which are designed to provide operations on a resource should be called in an appropriate sequence.

 	

 Advisory

	

 Directive 4.14

 	

 The validity of values received from external sources shall be checked.

 	

 Required

	

 Directive 5.1

 	

 There shall be no data races between threads.

 	

 Required

	

 Directive 5.2

 	

 There shall be no deadlocks between threads.

 	

 Required

	

 Rule 1.1

 	

 The program shall contain no violations of the standard C syntax and constraints, and shall not exceed the implementation's translation limits.

 	

 Required

	

 Rule 1.2

 	

 Language extensions should not be used.

 	

 Advisory

	

 Rule 1.4

 	

 Emergent language features shall not be used.

 	

 Required

	

 Rule 2.1

 	

 A project shall not contain unreachable code.

 	

 Required

	

 Rule 2.2

 	

 There shall be no dead code.

 	

 Required

	

 Rule 2.3

 	

 A project should not contain unused type declarations.

 	

 Advisory

	

 Rule 2.4

 	

 A project should not contain unused tag declarations.

 	

 Advisory

	

 Rule 2.5

 	

 A project should not contain unused macro declarations.

 	

 Advisory

	

 Rule 2.6

 	

 A function should not contain unused label declarations.

 	

 Advisory

	

 Rule 2.7

 	

 There should be no unused parameters in functions.

 	

 Advisory

	

 Rule 3.1

 	

 The character sequences /* and // shall not be used within a comment.

 	

 Required

	

 Rule 3.2

 	

 Line-splicing shall not be used in // comments.

 	

 Required

	

 Rule 4.1

 	

 Octal and hexadecimal escape sequences shall be terminated.

 	

 Required

	

 Rule 4.2

 	

 Trigraphs should not be used.

 	

 Advisory

	

 Rule 5.1

 	

 External identifiers shall be distinct.

 	

 Required

	

 Rule 5.2

 	

 Identifiers declared in the same scope and name space shall be distinct.

 	

 Required

	

 Rule 5.3

 	

 An identifier declared in an inner scope shall not hide an identifier declared in an outer scope.

 	

 Required

	

 Rule 5.4

 	

 Macro identifiers shall be distinct.

 	

 Required

	

 Rule 5.5

 	

 Identifiers shall be distinct from macro names.

 	

 Required

	

 Rule 5.6

 	

 A typedef name shall be a unique identifier.

 	

 Required

	

 Rule 5.7

 	

 A tag name shall be a unique identifier.

 	

 Required

	

 Rule 5.8

 	

 Identifiers that define objects or functions with external linkage shall be unique.

 	

 Required

	

 Rule 5.9

 	

 Identifiers that define objects or functions with internal linkage should be unique.

 	

 Advisory

	

 Rule 6.1

 	

 Bit-fields shall only be declared with an appropriate type.

 	

 Required

	

 Rule 6.2

 	

 Single-bit named bit fields shall not be of a signed type.

 	

 Required

	

 Rule 6.3

 	

 A bit field shall not be declared as a member of a union.

 	

 Required

	

 Rule 7.1

 	

 Octal constants shall not be used.

 	

 Required

	

 Rule 7.2

 	

 A "u" or "U" suffix shall be applied to all integer constants that are represented in an unsigned type.

 	

 Required

	

 Rule 7.3

 	

 The lowercase character "l" shall not be used in a literal suffix.

 	

 Required

	

 Rule 7.4

 	

 A string literal shall not be assigned to an object unless the object's type is "pointer to const-qualified char".

 	

 Required

	

 Rule 8.1

 	

 Types shall be explicitly specified.

 	

 Required

	

 Rule 8.2

 	

 Function types shall be in prototype form with named parameters.

 	

 Required

	

 Rule 8.3

 	

 All declarations of an object or function shall use the same names and type qualifiers.

 	

 Required

	

 Rule 8.4

 	

 A compatible declaration shall be visible when an object or function with external linkage is defined.

 	

 Required

	

 Rule 8.5

 	

 An external object or function shall be declared once in one and only one file.

 	

 Required

	

 Rule 8.6

 	

 An identifier with external linkage shall have exactly one external definition.

 	

 Required

	

 Rule 8.7

 	

 Functions and objects should not be defined with external linkage if they are referenced in only one translation unit.

 	

 Advisory

	

 Rule 8.8

 	

 The static storage class specifier shall be used in all declarations of objects and functions that have internal linkage.

 	

 Required

	

 Rule 8.9

 	

 An object should be defined at block scope if its identifier only appears in a single function.

 	

 Advisory

	

 Rule 8.10

 	

 An inline function shall be declared with the static storage class.

 	

 Required

	

 Rule 8.11

 	

 When an array with external linkage is declared, its size should be explicitly specified.

 	

 Advisory

	

 Rule 8.12

 	

 Within a n enumerator list, the value of an implicitly-specified enumeration constant shall be unique.

 	

 Required

	

 Rule 8.13

 	

 A pointer should point to a const-qualified type whenever possible.

 	

 Advisory

	

 Rule 8.14

 	

 The restrict type qualifier shall not be used.

 	

 Required

	

 Rule 9.1

 	

 The value of an object with automatic storage duration shall not be read before it has been set.

 	

 Mandatory

	

 Rule 9.2

 	

 The initializer for an aggregate or union shall be enclosed in braces.

 	

 Required

	

 Rule 9.3

 	

 Arrays shall not be partially initialized.

 	

 Required

	

 Rule 9.4

 	

 An element of an object shall not be initialized more than once.

 	

 Required

	

 Rule 9.5

 	

 Where designated initializers are used to initialize an array object the size of the array shall be specified explicitly.

 	

 Required

	

 Rule 10.1

 	

 Operands shall not be of an inappropriate essential type.

 	

 Required

	

 Rule 10.2

 	

 Expressions of essentially character type shall not be used inappropriately in addition and subtraction operation.

 	

 Required

	

 Rule 10.3

 	

 The value of an expression shall not be assigned to an object with a narrower essential type or of a different essential type category.

 	

 Required

	

 Rule 10.4

 	

 Both operands of an operator in which the usual arithmetic conversions are performed shall have the same essential type category.

 	

 Required

	

 Rule 10.5

 	

 The value of an expression should not be cast to an inappropriate essential type.

 	

 Advisory

	

 Rule 10.6

 	

 The value of a composite expression shall not be assigned to an object with wider essential type.

 	

 Required

	

 Rule 10.7

 	

 If a composite expression is used as one operand of an operator in which the usual arithmetic conversions are performed then the other operand shall not have wider essential type.

 	

 Required

	

 Rule 10.8

 	

 The value of a composite expression shall not be cast to a different essential type category or a wider essential type.

 	

 Required

	

 Rule 11.1

 	

 Conversions shall not be performed between a pointer to a function and any other type.

 	

 Required

	

 Rule 11.2

 	

 Conversions shall not be performed between a pointer to an incomplete type and any other type.

 	

 Required

	

 Rule 11.3

 	

 A cast shall not be performed between a pointer to object type and a pointer to a different object type.

 	

 Required

	

 Rule 11.4

 	

 A conversion should not be performed between a pointer to object and an integer type.

 	

 Advisory

	

 Rule 11.5

 	

 A conversion should not be performed from pointer to void into pointer to object.

 	

 Advisory

	

 Rule 11.6

 	

 A cast shall not be performed between pointer to void and an arithmetic type.

 	

 Required

	

 Rule 11.7

 	

 A cast shall not be performed between pointer to object and a non-integer arithmetic type.

 	

 Required

	

 Rule 11.8

 	

 A cast shall not remove any const or volatile qualification from the type pointed to by a pointer.

 	

 Required

	

 Rule 11.9

 	

 The macro NULL shall be the only permitted form of integer null pointer constant.

 	

 Required

	

 Rule 12.1

 	

 The precedence of operators within expressions should be made explicit.

 	

 Advisory

	

 Rule 12.2

 	

 The right hand operand of a shift operator shall lie in the range zero to one less than the width in bits of the essential type of the left hand operand.

 	

 Required

	

 Rule 12.3

 	

 The comma operator should not be used.

 	

 Advisory

	

 Rule 12.4

 	

 Evaluation of constant expressions should not lead to unsigned integer wrap-around.

 	

 Advisory

	

 Rule 12.5

 	

 The sizeof operator shall not have an operand which is a function parameter declared as "array of type".

 	

 Mandatory

	

 Rule 12.6

 	

 Structure and union members of atomic objects shall not be directly accessed.

 	

 Required

	

 Rule 13.1

 	

 Initializer lists shall not contain persistent side effects.

 	

 Required

	

 Rule 13.2

 	

 The value of an expression and its persistent side effects shall be the same under all permitted evaluation orders.

 	

 Required

	

 Rule 13.3

 	

 A full expression containing an increment (++) or decrement (--) operator should have no other potential side effects other than that caused by the increment or decrement operator.

 	

 Advisory

	

 Rule 13.4

 	

 The result of an assignment operator should not be used.

 	

 Advisory

	

 Rule 13.5

 	

 The right hand operand of a logical && or || operator shall not contain persistent side effects.

 	

 Required

	

 Rule 13.6

 	

 The operand of the sizeof operator shall not contain any expression which has potential side effects.

 	

 Mandatory

	

 Rule 14.1

 	

 A loop counter shall not have essentially floating type.

 	

 Required

	

 Rule 14.2

 	

 A for loop shall be well-formed.

 	

 Required

	

 Rule 14.3

 	

 Controlling expressions shall not be invariant.

 	

 Required

	

 Rule 14.4

 	

 The controlling expression of an if statement and the controlling expression of an iteration-statement shall have essentially Boolean type.

 	

 Required

	

 Rule 15.1

 	

 The goto statement should not be used.

 	

 Advisory

	

 Rule 15.2

 	

 The goto statement shall jump to a label declared later in the same function.

 	

 Required

	

 Rule 15.3

 	

 Any label referenced by a goto statement shall be declared in the same block, or in any block enclosing the goto statement.

 	

 Required

	

 Rule 15.4

 	

 There should be no more than one break or goto statement used to terminate any iteration statement.

 	

 Advisory

	

 Rule 15.5

 	

 A function should have a single point of exit at the end.

 	

 Advisory

	

 Rule 15.6

 	

 The body of an iteration-statement or a selection-statement shall be a compound statement.

 	

 Required

	

 Rule 15.7

 	

 All if ... else if constructs shall be terminated with an else statement.

 	

 Required

	

 Rule 16.1

 	

 All switch statements shall be well formed.

 	

 Required

	

 Rule 16.2

 	

 A switch label shall only be used when the most closely-enclosing compound statement is the body of a switch statement.

 	

 Required

	

 Rule 16.3

 	

 An unconditional break statement shall terminate every switch-clause.

 	

 Required

	

 Rule 16.4

 	

 Every switch statement shall have a default label.

 	

 Required

	

 Rule 16.5

 	

 A default label shall appear as either the first or the last switch label of a switch statement.

 	

 Required

	

 Rule 16.6

 	

 Every switch statement shall have at least two switch clauses.

 	

 Required

	

 Rule 16.7

 	

 A switch expression shall not have an essentially Boolean type.

 	

 Required

	

 Rule 17.1

 	

 The features of shall not be used.

 	

 Required

	

 Rule 17.2

 	

 Functions shall not call themselves, either directly or indirectly.

 	

 Required

	

 Rule 17.3

 	

 A function shall not be declared implicitly.

 	

 Mandatory

	

 Rule 17.4

 	

 All exit paths from a function with non-void return type shall have an explicit return statement with an expression.

 	

 Mandatory

	

 Rule 17.5

 	

 The function argument corresponding to a parameter declared to have an array type shall have an appropriate number of elements.

 	

 Advisory

	

 Rule 17.6

 	

 The declaration of an array parameter shall not contain the static keyword between the [].

 	

 Mandatory

	

 Rule 17.7

 	

 The value returned by a function having non-void return type shall be used.

 	

 Required

	

 Rule 17.8

 	

 A function parameter should not be modified.

 	

 Advisory

	

 Rule 17.10

 	

 A function declared with a _Noreturn function specifier shall have void return type.

 	

 Required

	

 Rule 17.12

 	

 A function identifier should only be used with either a preceding &, or with a parenthesized parameter list.

 	

 Advisory

	

 Rule 18.1

 	

 A pointer resulting from arithmetic on a pointer operand shall address an elements of the same array as that pointer operand.

 	

 Required

	

 Rule 18.2

 	

 Subtraction between pointers shall only be applied to pointers that address elements of the same array.

 	

 Required

	

 Rule 18.3

 	

 The relational operators >, >=, < and

	

 Required

	

 Rule 18.4

 	

 The +, -, += and -= operators should not be applied to an expression of pointer type.

 	

 Advisory

	

 Rule 18.5

 	

 Declarations should contain no more than two levels of pointer nesting.

 	

 Advisory

	

 Rule 18.6

 	

 The address of an object with automatic storage shall not be copied to another object that persists after the first object has ceased to exist.

 	

 Required

	

 Rule 18.7

 	

 Flexible array members shall not be declared.

 	

 Required

	

 Rule 18.8

 	

 Variable-length array types shall not be used.

 	

 Required

	

 Rule 19.1

 	

 An object shall not be assigned or copied to an overlapping object.

 	

 Mandatory

	

 Rule 19.2

 	

 The union keyword should not be used.

 	

 Advisory

	

 Rule 20.1

 	

 #include directives should only be preceded by preprocessor directives or comments.

 	

 Advisory

	

 Rule 20.2

 	

 The ', " or \ characters and the /* or // character sequences shall not occur in a header file name.

 	

 Required

	

 Rule 20.3

 	

 The #include directive shall be followed by either a or "filename" sequence.

 	

 Required

	

 Rule 20.4

 	

 A macro shall not be defined with the same name as a keyword.

 	

 Required

	

 Rule 20.5

 	

 #undef should not be used.

 	

 Advisory

	

 Rule 20.6

 	

 Tokens that look like a preprocessing directive shall not occur within a macro argument.

 	

 Required

	

 Rule 20.7

 	

 Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses.

 	

 Required

	

 Rule 20.8

 	

 The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

 	

 Required

	

 Rule 20.9

 	

 All identifiers used in the controlling expression of #if or #elif preprocessing directives shall be #define'd before evaluation.

 	

 Required

	

 Rule 20.10

 	

 The # and ## preprocessor operators should not be used.

 	

 Advisory

	

 Rule 20.11

 	

 A macro parameter immediately following a # operator shall not immediately be followed by a ## operator.

 	

 Required

	

 Rule 20.12

 	

 A macro parameter used as an operand to the # or ## operators, which is itself subject to further macro replacement, shall only be used as an operand to these operators.

 	

 Required

	

 Rule 20.13

 	

 A line whose first token is # shall be a valid preprocessing directive.

 	

 Required

	

 Rule 20.14

 	

 All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if, #ifdef or #ifndef directive to which they are related.

 	

 Required

	

 Rule 21.1

 	

 #define and #undef shall not be used on a reserved identifier or reserved macro name.

 	

 Required

	

 Rule 21.2

 	

 A reserved identifier or macro name shall not be declared.

 	

 Required

	

 Rule 21.3

 	

 The memory allocation and deallocation functions of shall not be used.

 	

 Required

	

 Rule 21.4

 	

 The standard header file shall not be used.

 	

 Required

	

 Rule 21.5

 	

 The standard header file shall not be used.

 	

 Required

	

 Rule 21.6

 	

 The Standard Library input/output functions shall not be used.

 	

 Required

	

 Rule 21.7

 	

 The Standard Library functions atof, atoi, atol and atoll of shall not be used.

 	

 Required

	

 Rule 21.8

 	

 The Standard Library termination functions of shall not be used.

 	

 Required

	

 Rule 21.9

 	

 The Standard Library functions bsearch and qsort of shall not be used.

 	

 Required

	

 Rule 21.10

 	

 The Standard Library time and date functions shall not be used.

 	

 Required

	

 Rule 21.11

 	

 The standard header file shall not be used.

 	

 Required

	

 Rule 21.12

 	

 The exception handling features of should not be used.

 	

 Advisory

	

 Rule 21.13

 	

 Any value passed to a function in shall be representable as an unsigned char or be the value EOF.

 	

 Mandatory

	

 Rule 21.14

 	

 The Standard Library function memcmp shall not be used to compare null terminated strings.

 	

 Required

	

 Rule 21.15

 	

 The pointer arguments to the Standard Library functions memcpy, memmove and memcmp shall be pointers to qualified or unqualified versions of compatible types.

 	

 Required

	

 Rule 21.16

 	

 The pointer arguments to the Standard Library function memcmp shall point to either a pointer type, an essentially signed type, an essentially unsigned type, an essentially Boolean type or an essentially enum type.

 	

 Required

	

 Rule 21.17

 	

 Use of the string handling functions from shall not result in accesses beyond the bounds of the objects referenced by their pointer parameters.

 	

 Mandatory

	

 Rule 21.18

 	

 The size_t argument passed to any function in shall have an appropriate value.

 	

 Mandatory

	

 Rule 21.19

 	

 The pointers returned by the Standard Library functions localeconv, getenv, setlocale or, strerror shall only be used as if they have pointer to const-qualified type.

 	

 Mandatory

	

 Rule 21.20

 	

 The pointer returned by the Standard Library functions asctime, ctime, gmtime, localtime, localeconv, getenv, setlocale or strerror shall not be used following a subsequent call to the same function.

 	

 Mandatory

	

 Rule 21.21

 	

 The Standard Library function system of shall not be used.

 	

 Required

	

 Rule 21.24

 	

 The random number generator functions of shall not be used.

 	

 Required

	

 Rule 21.25

 	

 All memory synchronization operations shall be executed in sequentially consistent order.

 	

 Required

	

 Rule 22.1

 	

 All resources obtained dynamically by means of Standard Library functions shall be explicitly released.

 	

 Required

	

 Rule 22.2

 	

 A block of memory shall only be freed if it was allocated by means of a Standard Library function.

 	

 Mandatory

	

 Rule 22.3

 	

 The same file shall not be open for read and write access at the same time on different streams.

 	

 Required

	

 Rule 22.4

 	

 There shall be no attempt to write to a stream which has been opened as read-only.

 	

 Mandatory

	

 Rule 22.5

 	

 A pointer to a FILE object shall not be dereferenced.

 	

 Mandatory

	

 Rule 22.6

 	

 The value of a pointer to a FILE shall not be used after the associated stream has been closed.

 	

 Mandatory

	

 Rule 22.7

 	

 The macro EOF shall only be compared with the unmodified return value from any Standard Library function capable of returning EOF.

 	

 Required

	

 Rule 22.8

 	

 The value of errno shall be set to zero prior to a call to an errno-setting-function.

 	

 Required

	

 Rule 22.9

 	

 The value of errno shall be tested against zero after calling an errno-setting-function.

 	

 Required

	

 Rule 22.10

 	

 The value of errno shall only be tested when the last function to be called was an errno-setting-function.

 	

 Required

	

 Rule 22.11

 	

 A thread that was previously either joined or detached shall not be subsequently joined nor detached.

 	

 Required

	

 Rule 22.16

 	

 All mutex objects locked by a thread shall be explicitly unlocked by the same thread.

 	

 Required

	

 Rule 23.2

 	

 A generic selection that is not expanded from a macro shall not contain potential side effects in the controlling expression.

 	

 Required

	

 Rule 23.3

 	

 A generic selection should contain at least one non-default association.

 	

 Advisory

	

 Rule 23.8

 	

 A default association shall appear as either the first or the last association of a generic selection.

 	

 Required

	

	

 Footer

	
			
		
		
	

	

 Corporate

 	About Us
	Careers
	ESG
	Inclusion & Diversity
	Investor Relations
	View our Office Locations
	Contact Us

 Products

 	Application Security
	Semiconductor IP
	Verification
	Design
	Silicon Engineering

 Resources

 	Solutions
	Services
	Support
	Community
	Academic & Research Alliances (SARA)
	Manage Subscriptions

 Learn

 	Blogs
	Press Releases
	Newsroom
	What is EDA?
	What is Application Security?

 Legal

 	Privacy
	Trademarks & Brands
	Software Integrity Agreements
	Security

 Follow

 	
	
	
	
	

 Follow

 	
	
	
	
	

 ©2024 Synopsys, Inc. All Rights Reserved

