

A Power-Centric Timing Optimization Flow for a Quad-Core ARM Cortex-A7 Processor

Bernard Ortiz de Montellano

Product Manager

Processor Division

Dale Lomelino
Staff Applications Consultant

SYNOPSYS[®]

March 26, 2013

Agenda

ARM-Synopsys Project Introduction

Bernard Ortiz de Montellano

Power-Centric Timing Optimization Flow for a Quad-Core ARM® Cortex®-A7 Processor

Dale Lomelino

ARM-Synopsys Project Introduction

The ARM Cortex-A7 MPCore™ Processor

Introducing big.LITTLE™ Processing

Implementation Optimization for big.LITTLE

ARM-Synopsys Collaboration

Introducing the Cortex-A7 MPCore Processor

The most energy-efficient v7A (32-bit) application processor

- Power efficient microarchitecture
 - In-order 8-stage, partial dual-issue
 - Integrated NEON™ and FPU, L2, improved memory system
- Architecture aligned with Cortex-A15 MPCore
 - Hardware enhanced OS virtualization
 - AMBA® 4 ACE system coherency
 - 1 TB physical memory addressable

big.LITTLE processing with Cortex-A15 MPCore and CCI-400

- Processor cluster includes
- 1-4 processor cores with integrated L2, SCU and bus interface
- IP available now

Compelling performance at <100mW for big.LITTLE technology and standalone use

big.LITTLE Processing: 2013

- Tightly coupled combination of two ARM CPU clusters:
 - Cortex-A15 and Cortex-A7 processors functionally identical CPUs
 - Same programmers view, looks the same to OS and applications
- big.LITTLE combines high performance and low power
 - Automatically selects the right processor for the right job
 - Redefines the efficiency/performance trade-off

Right Size Core for the Task

Ë

Most energy-efficient applications processor from ARM

- · Best efficiency for light tasks
- Simple, in-order, 8-stage pipeline

- Cortex-A7
- Recommended implementation target: highest efficiency

Highest performance in mobile power envelope

big

- Performance for heavy tasks
- Complex, out-of-order, multi-issue pipeline
- Up to 2x performance of today's high-end smartphones
- Recommended implementation target: high performance

Cortex-AI5

Implementation Targeting for a big.LITTLE System-on-Chip

- Big cluster: Cortex-A15 processor
 - Choose aggressive frequency target
 - Power is mitigated ~50% with MP software
- LITTLE cluster: Cortex-A7 processor
 - Choose high efficiency target
 - Very small area for quad core!
- CoreLink™ CCI-400 Cache Coherent Interconnect
 - Implement to favor performance
 - Do not starve the big cluster
- GIC-400
 - Provides transparent virtualized interrupt control
 - Implement to favor performance

Performance and Energy-Efficiency

Typical big.LITTLE DVFS Single-Core Curves

Performance and Energy-Efficiency

Typical big.LITTLE DVFS Single-Core Curves

big.LITTLE Measured Results

Optimized Power and Responsiveness

Performance and Energy-Efficiency

big.LITTLE Technology delivers superphone performance in an effective mid-range power budget

Collaboration Expanded

To Deliver Optimized Methodologies For ARM Cortex Processors

ARM and Synopsys Expand Collaboration to Optimize Power and Performance, and Accelerate Design and Verification for ARM Technology-based SoCs

CAMBRIDGE, United Kingdom and MOUNTAIN VIEW, Calif., Aug. 28, 2012

Optimized Methodologies for ARM's Cortex-A15, Cortex-A7 and CCI-400 Solutions Help Designers Achieve Processor Performance and Power Objectives Faster

CAMBRIDGE, UK, and MOUNTAIN VIEW, Calif. Mar. 21, 2013

Collaboration Objectives

Excellent Implementation For Cortex-A7 Processor

QOR

- Meet power target while optimizing for best timing within power budget, best area within power and timing budgets
- Target market requires a power centric implementation

Schedule

- Develop quad-core Cortex-A7 flow quickly for stand-alone or big.LITTLE
- Enable ARM and Synopsys customers timely access

Flow

- RTL through Route
- Repeatable, robust, easily modifiable scripts

Documentation

- Guidelines for joint customers to follow when targeting a different configuration
- Best practices and pitfalls

Primary Deliverables: Reference Implementations (RI) with real, repeatable results

ARM + Synopsys Collaboration

- Quad-core Cortex-A7 processor
- TSMC 28HPM process
- ARM POP™ IP: core optimized standard cells and fast cache instances

Synopsys Engineering and Low Power Expertise

Reference Implementation for an ARM Cortex-A7 MPCore processor optimized for excellent efficiency

Recommended Implementations for your big.LITTLE SoC

- Implementation recommendations developed as a result of the ARM and Synopsys collaboration
- Step 1: Download your ARM Deliverables
 - Processor and fabric IP
- Step 2: Download your Synopsys Deliverables
 - Available now via SolvNet for joint Synopsys and ARM customers
 - 1. "big" cluster: dual-core Cortex-A15 processor
 - Scripts, design information, documentation
 - 2. "LITTLE" cluster: Cortex-A7 processor
 - Scripts, design information, documentation
 - Corelink™ CCI-400 Cache Coherent Interconnect
 - Scripts, design information, documentation

CCI-400 Cache Coherent Interconnect

Reference Implementations are an excellent starting point for implementing an effective big.LITTLE SoC processor

Agenda

ARM-Synopsys Project Introduction

Bernard Ortiz de Montellano

Power-Centric Timing Optimization Flow for a Quad-Core Cortex-A7 Processor

Dale Lomelino

Power-centric Timing Opt. Flow

Galaxy Low Power Technologies

Feature Subset Used In Quad-Core Cortex-A7 Implementation ynopsys Users Group

Dynamic Power

- Advanced clock gating
- CTS w/ low power placement (LPP)

Leakage Power

- Multi-threshold (Multi-Vt) libraries
- Limit usage of LVT cells
- Channel length cell variants
- Multicorner / Multimode (MCMM)
- Final-stage leakage recovery (FSLR)

Multivoltage (UPF)

- Multivoltage power domains
- Shutdown regions

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Libs: Vt-classes / Channel-length

For Power/Timing Tradeoff

Source: www.arm.com/images/PIPD_Logic_MC_animation_small.gif

Choosing Library Subset

ARM Libraries for Quad-Core Cortex-A7 Processor

Suppress Hears Group

- Technology Details
 - TSMC28HPM process
 - 10 layer metal (1p10m_5x2y2z)
 - ARM POP™ IP libraries
 - Fast Cache Instance (FCI) RAMs
 - Standard cells
 - 9T high-density libraries
 - exclude "CL" for stand-alone config
- PVT Configuration 4 corners
 - Setup (OC_WC): SSG / 0.81V / 0C
 - Hold (OC_BC): FF / 1.05V / 125C
 - Power (OC_LEAK): TT / 0.90V / 85C
 - IR (OC_IR): FFG / 1.0V / 125C
- Three transistor channel lengths
 - CS = "short" (faster, more power)
 - CM = "medium" (standard)
 - CL = "long" (slower, less power)
 - same cell footprint, swappable

Standard Cell Sele	ection
(Multiple Vt / Channel-length variants)	

Vt Class	Channel Length	Cell Family
ULVT	CS	not used
ULVI	CM	not used
	CS	
LVT	CM	
	CL	not used
C) /T	CS	
SVT	CM	
(RVT)	CL	not used
HVT	CM	
UHVT	CM	

- 6 Vt/channel-length classes used
- ULVT not used due to leakage power
- CL has add'l monetary cost, not used

ARM POP™ IP Core-Hardening Acceleration Technology

New Processes

New Cores

New Optimizations

POP IP libraries are used in the quad-core Cortex-A7 MPCore cluster

Core-Hardening Acceleration by ARM

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Quad-Core Cortex-A7 Configuration (snug

Representative Across Many Applications

Configurable Feature	Selected Value
# Cores	4
L2 cache size	1MB
L1 Instruction cache	32KB
L1 Data cache	32KB
NEON™	Included
FPU	Included
Generic Interrupt Controller (GIC)	Included
Embedded Trace Macro Cell (ETM)	Included
Shared Peripheral Interrupts	128

"The Spec": Worked Example Specification for big.LITTLE, Cortex™-A15, Cortex™-A7, Cortex™-A9, and CCI-400

Synopsys Users Group

Edit RTL = Configuration Configure ETM/GIC Modules, Instantiate RAMs

- Design configuration defined in global configuration file
- CORTEXA7INTEGRATION_
 CONFIG.v
- Behavioral RAM components changed to library RAM macro instantiations.
- Fast Cache Instance (FCI)
 RAMs, from POP IP libraries
- Behavioral clock gating cells changed to library clock gating cell instantiations
- Used LVT ICGs, for smallest insertion delay

RTL changes during project

Parameters included: ETM_PRESENT/GIC_PRESENT

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Floorplan Refinement

Leveraged ARM's Experience, Adjust For This Cfg

Saved Area - Made Use Of Corners, Reshaped CPU To Match

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

UPF & Power Plan - ARM iRM Based (snug

Use Design Compiler Design Vision GUI To Visualize Users Group

UPF ModificationsChanges From ARM's Cortex-A7 iRM

Started with supply_net
 UPF

Added commands for I/Os

set_related_supply_net

For top-level (NON_CPU)

Added supply net connections for CPU domains

Added logic ports, logic nets for

- Switch cell controls
- Isolation cell controls

Supports verification in Formality

 Updated to use new UPF constructs supported in 2011.09 and later versions Created additional bias.upf file Added variable:

set
upf_create_implicit_supply_
sets false

 Updated port_state(s) and PST setup

Power Switches - ARM iRM Based

Leveraged ARM's Experience To Balance IR-drop And In-rush Current

- "Trickle" switches (blue)
 - Few = limits in-rush current
 - HEADBUFTIE26_X3M_A9TS_CM
- "Hammer" switches (red)
 - Many = low on-resistance (~20:1 hammer:trickle)
 - HEADTIE22_A9TS_CM
- SVT_CM switches for low leakage
- RAMs have built-in switches

Power Analysis w/ PrimeRail

Used To Debug IR-drop & In-rush Current Trade-off Shopsys Users Group

IR-drop

Missing power connections, fixed by aligning pins

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Quad-Core Cortex-A7 Configuration (snug

A7 = "LITTLE" in big.LITTLE

Quad-Core Cortex-A7 Priorities

1. Meet the power target

- 2. Optimize for best timing (within power budget)
- Optimize for area (within power & timing budgets)

Goal: Deliver Cortex-A7 "Reference Implementation" flow

- scripts for cpu (cortexa7core)
- scripts for non_cpu (CORTEXA7INTEGRATION)

Power is #1 in the "LITTLE" processor

Synopsys' Core Optimization Collatera

Built on Galaxy Tool RMs

- Leverages HPC
- Core and technology library specific
- Includes scripts, floorplan, constraints

Reference **Implementations** (RIs)

Lynx Plug-Ins

 RI scripts instrumented for Lynx environment

- Leverages RMs, tuned for high perf cores
- Core and technology library independent

Hi-Performance Core (HPC) Methodology

Reference Methodologies (RMs)

- Tool- and releasespecific scripts
- Core and technology library independent

More designitechnology specific

Reference Implementation Flow

Captures Best Practices in the Scripts

- Start w/ HPC with -power enabled throughout
- Floorplan is HPC input
- DCG with SPG
 - with -power
- ICC w/ SPG-based placement
 - with -power
- ICC CTS/CTO
- ICC optimized routing
 - with -power
- ICC focal_opt timing-closure
 - with -power

Reference Implementation is tuned for Quad-Core Cortex-A7 Processor

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

First, Check the Library Limits Then Adjust The Flow To Meet The Power Target

- Explore the libraries
- Use Synopsys Physical Guidance (SPG) for best DC-G/ICC correlation:
 - compile_ultra -spg
- Manage cell density
 placer_max_cell_density_
 threshold
- Reserve 20-30% of power budget for:
 - DC-G/ICC correlation
 - Clock tree insertion
 - Pre/post-route correlation

Manage Power: target_library

SVT_CM = "Base" Library, Balances Power/Timing

target_library	UHVT CM	SVT CL	HVT CM	SVT CM	LVT CL	SVT CS	LVT CM	LVT CS
compile_ultra				✓	\			
place_opt				✓		√ *		
clock_opt_cts	✓		✓	✓		✓	✓	√ **
clock_opt_psyn				✓		✓		
clock_opt_rt				✓		✓		
route	✓		✓	✓				
route_opt	✓		✓	✓				
focal_opt			✓	✓		✓	✓	

^{*} set_multi_vth_constraint -lvth_percentage 15 -cost area \
 -type hard -lvth groups {stdcell 9t rvt CS}

^{**} Use lvt_CS for minimum insertion delay (clock OCV: 8% setup, 14% hold)

Manage power: clock_uncertainty

Timing target impacts power

- Do NOT over-constrain in synthesis
 - impacts power
- Relax hold uncertainty for pre-route fix_hold
 - saves power prior to route
- Use signoff constraints throughout
 - avoids pessimism
- Signoff uncertainty used for both cpu & non_cpu

Cortex-A7 CPU & NON_CPU	Clock Setup Uncertainty (ps)			
Flow Step	setup	hold		
compile_ultra	50	-		
place_opt	50	-		
clock_opt	50	-50		
route_opt	50	50		
focal_opt	50	50		
signoff	50	50		

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

DFT Strategy - Scan Compression

Mixed Shared/Non-Shared CODEC I/O Architecture

TetraMAX® ATPG Results

Synopsys Users Group

Improved Coverage, Reduced Tester Time

Pattern Count Reduction Compared to Dedicated IO	Mixed Shared I/O		
Transition	55%		
Stuck-At	52%		

Reduces pattern count by >50%

Test Time Reduction Compared to Legacy Scan	Dedicated I/O	Mixed Shared I/O	Mixed Production		
Transition	16X	36X		73X	
Stuck-At	18X	37X		43X	

Improves TATR up to 4.5X

Note:

Baseline ATPG patterns:run_atpg -auto, production ATPG patterns:run_atpg -optimize_patterns

DFT-aware Synthesis

Power and Congestion-aware DFT/ATPG

Timing constraints sensitive to DFT architecture

- RTL: Add DFT ports for ease of verification in Formality
- SDC: Constrain CODEC feedthroughs to avoid false timing violations
- MCMM: Test Mode STA scenarios needed as a minimum
 - Slow-speed shift
 - At-speed capture
 - provides timing data for ATPG within TetraMAX

Benefits of Synthesis-Based Test

- Concurrent handling of timing/power/area & physical effects
- Compression logic optimized to remove congestion and chains re-ordered during incremental compile to improve ICC correlation
- UPF power-intent encompasses test signals to ensure DFT insertion 'correct by construction'

Power-Aware ATPG defines switching activity budgets to test within functional conditions, avoiding false failures on tester due to ground bounce

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Summary of Power-centric P&R Micromanage Power (By Limiting Timing Opt.)

HPC

dc.tcl

init_design_icc.tcl

place_opt_icc.tcl

clock_opt_cts_icc.tcl

clock_opt_psyn_icc.tcl

clock_opt_route_icc.tcl

route icc.tcl

route_opt_icc.tcl

chip_finish_icc.tcl

focal opt icc.tcl

Power-Centric Additions To HPC

Timing-closure: limit svt_CS when added @place_opt set_multi_vth_constraint -lvth_percentage

Pre-route: relax fix_hold to avoid over-optimization set_clock_uncertainty -hold -0.050

VR/DR correlation: Merge clock-routing into psyn step, to get more accurate clock latency timing for optimization

Generate net_search_pattern with compare_rc to align VR RC to final DR RC -- apply in next place_opt

Size-only after adding lvt_CM lib for timing-closure: route_opt -incremental -size_only

Upgrade To Latest Tool Release For Best Power Results

- Power optimization enhanced in IC Compiler 2013.03
 - Exact same starting init_design_icc.CEL
 - Exact same script, no changes

cortexa7core	Frequency	TNS	Area	Leakage
2012.06-SP5	1.00	1.00	1.00	1.00
2013.03-Beta2	1.02	0.6	0.996	0.93

7% CPU Leakage Power Savings In 2013.03

Add skew_opt

skew_opt helps to/from_hard_macro path_groups

Limit skew_opt to a "few" endpoints for best results

```
set paths [get_timing_paths -slack_lesser_than -0.010 -max_paths 10000] append_to -unique skew_opt_pins [get_attr $paths startpoint] append_to -unique skew_opt_pins [get_attr $paths endpoint_clock_pin] echo Applying skew_opt on [sizeof $skew_opt_pins] pins ... skew_opt -no_auto_source -resolution 0.005 -pins $skew_opt_pins -output
```

log: Applying skew opt on 8353 pins ...

cortexa7core	Frequency	TNS	Area	Leakage
w/o skew_opt	1.00	1.00	1.00	1.00
w/ skew_opt	1.02	0.17	0.99	0.98

Better timing, area, AND power!

Manage Pre/Post-Route Correlation (sn)

Use compare_rc to Generate net_search_pattern Group

```
set enable net pattern rc scaling TRUE
create net search pattern -net length upper limit 2
set net search pattern delay estimation options \
 -max horizontal capacitance scaling factor 1.12564 \
 -max vertical capacitance scaling factor 1.12564 \
 -max horizontal resistance scaling factor 1.00355 \
 -max vertical resistance scaling factor 1.00355 \
 -via count scale 0.801555 \
 -via resistance 0.00201186
 -pattern 1
...net_length_upper_limit: 5, 10, 20, 50, 100, 200, 500
```

Net patterns avoid over-constrained timing, for low-power

Manage Cell Density for Low Power (snug

Target Consistency Across Flow

- Check cell density as early as DC-G
 - restore_spg_placement shows placement at init_design step
 - "-congestion" is default in compile_ultra
- Manage cell density, because it also impacts power/area
 - set placer max cell density threshold 0.7
 - set_congestion_options -max_util 0.8 -coord \$core

Quad-Core Cortex-A7 Processor

Low-Power Results Address Target Market

CPU Has Consistent Power/Timing

Tracks @ Each Step Vs Spec Target

OpCond: ssg_typical_max_0p81v_0c + cworst.tluplus

NON_CPU - Intermediate Results

Debugging "Jumps" in Power/Timing

OpCond: ssg_typical_max_0p81v_0c + cworst.tluplus

NON_CPU - Power/Timing Improved

Improved Tracking @ Each Step Vs Spec Target

OpCond: ssg_typical_max_0p81v_0c + cworst.tluplus

SVT Balances Power/Timing

Power-centric Timing Opt. Flow For a Quad-Core Cortex-A7 Processor

Top 10 Best Practices

For A Power-Centric Implementation

- Optimize for power FIRST, starting at synthesis
- Manage for power at each step, adjust timing target
 - target_library, -lvth_percentage -type hard
- Do NOT over-constrain timing
 - set clock uncertainty -hold -0.050
- Focus on correlation no power/timing "jumps"
 - DCG/ICC: use compile_ultra -spg; place_opt -spg
 - Pre/post-route (VR/DR) in ICC
 - compare_rc -net [<net length>]; net_search_pattern
- Manage cell density, because it impacts power/area
 - set placer_max_cell_density_threshold 0.7
 - set congestion options -max util 0.85 -coord \$core
 - Use of -congestion has power impact, use only if needed

Top 10 Best Practices

For A Power-Centric Implementation

- 6 Size-only after introducing new Vt libs
 - route_opt -incremental -size_only
- 7 Use -power & enable power-aware (avoid script errors)
 - set icc preroute power aware optimization true
 - set_route_opt_strategy -power_aware_optimization true
- 8 Use same low power target_lib technique in PT/ECO
 - Otherwise, fix_eco_timing may degrade power
- 9 Iterative design-closure process
 - Good timing => good power & good power => good timing
- 10 Power-centric flow is possible!

ARM + Synopsys Collaboration

- Quad-core Cortex-A7 processor
- TSMC 28HPM process
- ARM POP IP
 9T libraries
 and memories

POP

High Performance Core (HPC) scripts + Low-Power Experience

Reference Implementation for an ARM Cortex-A7 Processor
Optimized for low power and performance
Available Through SolvNet To Joint Customers Today!

Reference Implementation

Collateral & Availability (1/2)

Available for key components of the ARM big.LITTLE system

Reference Implementation for the ARM Cortex-A7 Processor Your best starting point for optimized implementation!

Reference Implementation Collateral & Availability (2/2)

ARM & Synopsys joint customers can download RI scripts & documentation from

www.synopsys.com/ARM-Opto

- For other processor cores, contact Synopsys technical support to help you configure and deploy HPC scripts
- For further optimization and customization support contact Synopsys Professional Services

Reference Implementation for the ARM Cortex-A7 Processor Your best starting point for optimized implementation!

High-Perf. Core Implementation

Synopsys Users Group

Sessions of Interest - Tuesday, March 26th

Presenters	Time	Session
Synopsys Lunch & Learn	12:00 PM to 1:30 PM	 Optimization Exploration of ARM[®] Cortex[™] Processor-Based Designs with the Lynx Design System
ARM & Synopsys Joint Tutorial	1:30 PM to 3:30 PM	 Power-centric Timing Optimization of an ARM® Cortex™-A7 Quad Core Processor Engineering Trade-Offs in the Implementation of a High Performance ARM® Cortex™-A15 Dual Core Processor
Broadcom MediaTek Samsung STMicroelectronics Customer Panel	4:15 PM to 5:15 PM	4. Achieving Optimum Results on High Performance Processor Cores

Q&A

Acronyms

CTS: Clock Tree Synthesis MCMM: Multi-Corner Multi-Mode
DCG: Synopsys Design Compiler Graphical MIM: Multiply Instantiated Module

DR: Detail Route OCV: On-Chip Variation

DRC: Design Rule Check POP: Processor Optimization Pack (ARM POP IP library)

DVFS/AFS: Dynamic Voltage and Frequency Scaling PT: Synopsys Primetime

FCI: Fast Cache Instance (ARM POP IP RAMs) PTSI: Primetime SI (timing analysis with xtalk & noise)

FSLR: Final Stage Leakage Recovery PTPX: Primetime PX (gate-level power analysis)

HPC: Synopsys High Performance Core (scripts) RI: Reference Implemenation

HVT: High Threshold Voltage RM: Synopsys Reference Methodology ICC: Synopsys IC Compiler SAIF: Switching Activity Interchange Format ILM: Interface Logic Model SPG: Synopsys Physical Guidance (synthesis)

ILM: Interface Logic Model SPG: Synopsys Physical Guidance (synthesis => place) iRM: ARM's Implementation Reference Methodology SVT/RVT: Standard Threshold Voltage

iRM: ARM's Implementation Reference Methodology SVT/RVT: Standard Threshold Voltage LCRM Synopsys Lynx Compatible Reference Methodology TATR: Test Application Time Reduction

LPP: Low Power Placement VCD: Value Change Dump

LVS: Layout vs Schematic VR: Virtual Route
LVT: Low Threshold Voltage Vt: Threshold Voltage