Overview

Photonic Device Compiler is the Synopsys solution for photonic IC designers and PDK developers to design, analyze, optimize, and use photonic devices within the Synopsys unified electrical and photonic design platform.

Introduction

Photonic integrated circuits (PICs) are efficiently simulated using compact models from a model library provided as part of a PDK to represent individual components in the circuit. The lack of complete and mature model libraries is a major impediment to high yields in PIC manufacturing. This is partly due to the current maturity of the ecosystem, and partly because of the wide variety of photonic devices required to address a certain application. PIC technology is vastly different than digital design and largely different than electrical analog mixed signal design. Most PIC components are optimized for a certain function, wavelength, fabrication process, etc.

Photonic Device Compiler provides a wide range of physical simulation methods in a single tool. Photonic Device Compiler also adds automation to take the results of the device design cycle and add it to a custom or personal device library, a PDK, or IP library. You can use these custom devices in the Synopsys PIC software solutions for schematic capture, circuit level simulation, layout, and verification. With Photonic Device Compiler, you use the industry’s most comprehensive set of photonic device simulators seamlessly integrated with TCAD Sentaurus™, the industry-leading process and electrical device simulation tool.

Unlike electronics, photonic circuit design requires direct access to device level tools to complement PDKs. Photonic Device Compiler is the solution for this.

Foundries use TCAD and Photonic Device Compiler for device design and modeling, and tools for mask flows on the production side.

Figure 1: The role of Photonic Device Compiler in the complete Synopsys platform for PIC design and manufacturing
Photonic Device Compiler Features

- Complete photonic device simulation, analysis, and optimization solution
- Works seamlessly with OptoCompiler™, OptSim™ Elite, and IC Validator
- Enables E/O device level co-simulation with TCAD Sentaurus™
- Enables design of custom components that can be used with foundry PDKs

Base

Simulators:
- Mode-solver
- FDTD
- BPM

Tools and Utilities:
- Optimization
- Clustering
- AWG Utility
- Custom PDK Utility

Elite

Simulators:
- Mode-solver
- FDTD (2x)
- BPM (2x)
- EME
- RCWA

Tools and Utilities:
- Optimization
- Clustering
- AWG Utility
- Multi-Physics Utility
- Custom PDK Utility

Figure 2: Photonic Device Compiler Tiers

Use Photonic Device Compiler to create and use a custom library with OptoCompiler:

- Use Custom Devices in conjunction with a foundry-provided PDK
- Design, simulate, and optimize passive and active integrated photonics devices for a targeted foundry
- Create symbols, layouts, and simulation models for OptoCompiler and OptSim Elite

Figure 3: Photonic Device Compiler flow for custom library generation
Applications

- Passive photonic device design
 Includes waveguides, bends, splitters, couplers, MMIs, AWGs, and polarization devices (rotators, splitters, or a polarization analysis of any of the previously listed devices)
- Active photonic device design
 Includes phase shifters, photodetectors, and modulators
- Assists in the creation of custom device models that can be used with a foundry PDK, to create a new PDK, or to create photonics IP

Platform Support

To learn more about our System Requirements, visit https://www.synopsys.com/photonic-solutions/product-system-requirements.html

- Linux: We officially support Red Hat Enterprise Linux (RHEL) and CentOS 6.6+, 7.1+, and 8+
- Windows 10 64-bit