
WHITE PAPER

synopsys.com

Introduction
Design verification for modern chips is a difficult and daunting problem. The sheer size and
complexity of these devices scale the verification effort faster than the design effort. In
fact, functional verification is usually the most resource- and time-intensive phase of a chip
development project. Many innovative technologies have been brought to bear on this problem:
static and formal verification, verification reuse and verification IP (VIP), constrained random
stimulus generation, advanced coverage metrics, coverage driven verification plans, and more.
Only through effective application of such techniques do development teams have any chance
of taping out functionally correct designs on time and on budget.

The situation grows dramatically more complicated for system-on-chip (SoC) designs with
embedded processors. Historically, processor companies have led innovation in verification
because additional layers of complexity are involved. Modern processor designs have a high
degree of parallelism, overlapping operations, complex cache structures, and many other
elements that make verification much harder. In addition, the very nature of processors
and SoCs means that both hardware and software work together to provide the required
functionality. This means that thorough hardware verification is not possible without taking
software into account.

When an SoC team licenses a proprietary processor core from an intellectual property (IP)
provider, the engineers place great faith in the process performed by the provider’s verification
team. The end users typically rely on the petacycles of instructions verified during processor
development and focus only on integration testing at their end. This is changing with the recent
proliferation of RISC-V based designs. The CPU core now requires thorough verification by the
SoC team. They need to budget additional resources and time, while considering the impact on
their project schedule.

RISC-V presents special challenges because its specification is designed to provide a
configurable and customizable solution for general purpose processors. There are many options
and variations defined in the instruction set architecture (ISA) specification, and users are
permitted to extend the ISA even further by adding custom instructions. Therefore, any RISC-V
verification solution must be flexible enough to accommodate customizations. Constrained
random test suites must be able to scale as per the chosen extensions. Similarly, the definition
and application of coverage metrics must scale to accommodate both standard variations and
custom instructions. A complete RISC-V verification environment requires a coverage model
built accordingly.

Authors
Prabha Krishnaswami
Senior Staff Applications
Engineer, Synopsys

Rohit Narkar
Director, Application
Engineering, Synopsys

Amit Goldie
Principal Applications
Engineer, Synopsys

Bipul Talukdar
Senior Director, Application
Engineering, Bluespec

Understanding UVM Coverage for
RISC-V Processor Designs

http://synopsys.com

2

Attempting to achieve complete RISC-V verification requires multiple methodologies employing a wide range of relevant
tools, including:

• Coverage driven simulation based on UVM constrained random methods and compliant with the Universal Verification
Methodology (UVM) standard

• Static and formal property verification

• Equivalence checking

• Emulation and FPGA based verification

• Low power verification depending on the intended design application

• Verification using the Portable Stimulus Standard (PSS)

This white paper focuses on the first technique in this list. It explains the basics of UVM functional coverage for RISC-V cores using the
Google RISCV-DV open-source project, Synopsys verification solutions, and RISC-V processor cores from Bluespec.

Background on RISC-V
Unlike traditional proprietary processor architectures, RISC-V is an open ISA originally developed at the University of California,
Berkeley. It is considered the fifth generation of processors built on the concept of the reduced instruction set computer (RISC).
Due to its openness and its technical merits, it has become very popular in recent years. The standard is now managed by RISC-V
International, which has more than three thousand members and which reported that more than ten billion chips containing
RISC-V cores had shipped by the end of 2022. Many implementations of RISC-V are available, both as open-source cores and as
commercial IP products.

RISC-V is a load-store ISA, with all arithmetic and logical instructions operating on general purpose registers and additional
instructions to move data between registers and memory. The base instruction set defines a set of integer operations on thirty-two
registers and a 32-bit memory address space. There are options for 64-bit and 128-bit addresses as well as a reduced set of sixteen
registers for embedded designs. Because it was designed to be applicable for a wide range of applications, most ISA features are
optional. For example, thirty-two floating-point registers are added if floating-point instructions are included. The optional features are
defined in a set of extensions including:

• M: Multiplication and division (integer)

• A: Atomic operations

• F: Floating point (32-bit)

• D: Double floating point (64-bit)

• Q: Quad floating point (128-bit)

• C: Compressed instructions

• B: Bit manipulation

• H: Hypervisor

• S: Supervisor

Background on UVM Coverage
UVM provides a foundation for building a modular, reusable testbench that is easy to modify for various designs. It defines the
testbench architecture, test sequences, and verification environment, which configures the design, configures the testbench, and
produces test stimulus for the design. The constrained random approach makes it possible to test a lot of input situations quickly
and effectively. Constraints are established on the input signals to guarantee the validity and realism of the generated stimulus. The
random stimulus generator takes advantage of these restrictions to provide input values that adhere to the constraints.

Coverage metrics are essential for constrained random verification approaches such as UVM. With hand-written directed tests,
each test is explicitly developed to verify a particular part of the functionality, so there is a clear correlation between tests and parts
of the design. With automatically generated tests, there is no such direct connection. Coverage shows which parts of the design
are stimulated by which tests, and which parts have not been exercised by any test. Verification engineers often tweak and bias
constraints to focus tests on unverified functionality. Only when all coverage is hit—or at least a high percentage as defined by project
targets—is the design considered well enough verified to consider taping out.

3

Structural code coverage (line, block, condition, expression, etc.) is an important part of the process. If any part of the register-
transfer-level (RTL) design code has not been exercised, it has not been verified, and bugs may be hiding there. However, code
coverage must be supplemented by functional coverage that reflects the intended functionality of the design. SystemVerilog, the
basis for UVM, includes coverpoints, covergroups, and cross coverage as constructs for specifying coverage. This resulting powerful
coverage model provides a faster, scalable approach to verify a RISC-V design quickly and reliably.

Background on RISCV-DV
As noted earlier, verifying processor and SoC designs requires a combination of hardware and software. The software aspect
includes programs running on the embedded processors, and often these programs are automatically generated sequences of
processor instructions designed to stress-test the design. In the case of the RISC-V ISA, there is a widely adopted solution. RISCV-DV
is an instruction generator for RISC-V processor verification developed by Google and available as open-source. It is designed for use
in UVM verification environments, generating handshakes between the generated code and the testbench, as well as an instruction
generation coverage model. It supports the base ISA and many of the extensions.

Bluespec RISC-V Example Core
Bluespec provides a wide variety of soft (RTL) cores compliant with the RISC-V ISA. The MCU embedded processor soft core used
in this white paper is a low footprint multi-cycle RISC-V controller optimized for minimal hardware usage. It implements the RV32I
instruction set, consisting of the base 32-bit (set I) RISC-V instructions. Other cores implementing higher extensions of the ISA are
available from Bluespec. Figure 1 shows a block diagram of the MCU core.

Interrupts

Controller
Multi-Cycle

Execution Units

Log Shifters

Multiplier

Register Files

GPR CSR

JTAG Debug Module

Fetch/Decode

ALU

Multi-Cycle

Writeback

Unified
Tightly

Coupled
Memory
(128 KB)

Bus
Interface
(AXI4/A

HBL/APB
or GPIO)

Figure 1: Block diagram of the Bluespec MCU core

The MCU is easy to integrate and operate. It runs on a single edged-triggered clock and a single reset pin. Instructions and data are
stored in a unified Tightly Coupled Memory (TCM). The core supports a maximum of 128 kilobytes of TCM and provides an AXI4
Bus Interface and a Debug Module. This version of the MCU does include a multiplier although, as shown in Figure 1, it is an option if
higher RISC-V extensions are selected. The controller fetches and passes instructions to the execution unit, where the ALU executes
basic operations in one cycle. Loads and stores to the TCM take an extra cycle. More complex operations such as shift and multiply
use additional cycles. The controller updates the RV32I architectural state stored in the PC (program counter), GPRs (general purpose
registers), and CSRs (control-status registers) after executing each instruction.

4

MCU Verification Methodology
The core described in the previous section was verified using a methodology that could be applied to any RISC-V processor design.
The basic functionality of the core is verified using bring-up tests, simple C programs that are bare metal compiled to generate
instruction binaries. These binaries are then loaded into a simple memory model that drives the stimulus for the core.

To stress-test the ISA, the open-source RISCV-DV is used to generate constrained random stimulus. It comprises two parts: a UVM
testbench generator that produces ISA-based random stimulus and an assembly language generator that creates assembly files
corresponding to the constrained random stimulus generated by the first step. The RISCV-DV environment provides instruction level,
sequence level, and program level randomization, and thus helps in obtaining good stimulus coverage for the ISA test suite. The
assembly files are converted into binary executables of random valid instructions that can run on any core supporting the RISC-V ISA.

Checking the results of running the tests on the RTL design requires some sort of golden reference. This is obtained by running
the same generated tests on the Spike open-source RISC-V instruction set simulator (ISS). The results from the golden source are
compared with the results of the simulation on the Bluespec core. In both the bring-up and random tests, Synopsys VCS® is used as
the simulator and the Synopsys Verdi® Automated Debug System is used to view waveforms and coverage results.

The current MCU simulation environment is spread across two testbenches:

• MCU testbench: top level testbench where the MCU RTL is simulated using VCS. The stimulus for this testbench can be created
either by bring-up tests or by constrained random stimulus. Code coverage is enabled in this testbench.

• RISCV-DV testbench: UVM testbench used to generate constrained random RISC-V instructions. Functional coverage is enabled
in this testbench. The stimulus generated here is eventually simulated in the MCU testbench. Spike ISS is also run in this
environment to create the golden reference for the MCU testbench.

MCU Coverage Measurement
As noted earlier, coverage metrics ratify the completeness and success of a verification strategy. They measure how well the
verification plan has been executed and whether the key features of the design have been exercised. Both functional and code
coverage are used in the Bluespec MPU verification environment. The previously described RISCV-DV generates a UVM testbench
with a readily available functional coverage model for the ISA test suite. Since this model is tightly coupled to the random generator
engine that stress-tests the RISC-V core, it is used for functional coverage of the MPU core. Figure 2 shows a strategy that merges
functional coverage generated in the RISCV-DV environment with code coverage generated in the MCU testbench. The merge can be
performed with the Synopsys VCS Unified Report Generator (URG) or with Synopsys Verdi Coverage.

RISCV-DV
1

3

Functional Coverage

Bluespec Testbench

Code Coverage

Test1
Seed1

Coverage Flow

VDB

Merging using URG/Verdi CoverageVCS simulations Viewing reports using Verdi Coverage

MergeBring up
Test1

VDB

Merge
VDB2

Figure 2: Coverage flow for the MPU core

Functional coverage definitions for RISC-V implementations must cover compliance to the ISA specification, ideally spanning all
possible instruction combinations. It turns out that this ideal is simply not achievable if one considers possible sources, destinations,
and data values. Thus, it is necessary to define realistic 100% RISC-V ISA coverage.

5

100% RISC-V ISA coverage
For each RV32I instruction, it is mathematically possible to enumerate coverage points that cover all possible modes, register
addresses, register contents, and immediate values. There are thirty-two possibilities for each register referenced in the instruction,
and covering all these values is easy. For an instruction with two source registers and one destination register, there are 32x32x32
(215) combinations, also within the reasonable realm for simulation. However, each 32-bit source register has one of 232 possible
data values, exploding the number of coverage points beyond all practical limits. Figure 3 shows example results for addition and
load instructions.

Instruction
Possible
Register
Values

Possible
Data

Values

Possible
Immediate

Values

Mathematically
Possible
Coverage

Practical
Coverage

RISCV-DV
Coverage

Improved
Coverage

Add
rd,rs1,rs2 25 x25 x25 232 x232 279 215 ? ?

LW
rd,rs1,imm 25 x25 232 212 254 222 ? ?

Figure 3: Examples of RISC-V ISA coverage

One way to define a practical number of coverage points is to consider all possible instruction modes, register addresses, and
immediate values, but not all possible data values for register contents. As Figure 3 demonstrates, this reduces coverage for the
addition instruction down to the 215 number practical for simulation. This table may be filled in for all RISC-V base instructions and
extensions in the core being verified.

Defining 100% RISC-V ISA coverage and sharpening the definition is an iterative process of upgrading the definition and re-running
the test suite to achieve the coverage goals. Building such a methodology is currently in progress as a collaboration between
Synopsys and Bluespec.

Synopsys Verdi Coverage and Debug Support
As shown in Figure 2, the code coverage results from the MCU testbench and the functional coverage results from the RISCV-DV
testbench are combined by merging the verification database (VDB) files generated by Synopsys VCS. The merged VDB is loaded into
Synopsys Verdi, where all coverage results can be viewed and analyzed. Figure 5 shows an example of viewing code coverage in the
Synopsys Verdi Coverage graphical user interface (GUI) and Figure 6 an example for functional coverage.

Figure 5: Synopsys Verdi used to view code coverage using the merged VDB

6

Figure 6: Synopsys Verdi used to view functional coverage using the merged VDB

The Synopsys Verdi Automated Debug System, when combined with the Synopsys Verdi Hardware Software Debug (HW/SW Debug)
Solution, provides a method for debugging embedded software. This approach integrates debug of the RTL core design at the
hardware level and debug of the embedded code at the assembly or C level. The C/assembly code, C variables, and stack are visible,
with the hardware and software debugging synchronized in time. Multiple cores in an SoC design can be debugged simultaneously.

This solution proved useful during the Bluespec MCU verification by providing more visibility into the generated RISC-V instructions.
It was especially helpful while debugging constrained random sequences, where user visibility into the software side may not be that
high. Figure 7 shows the MCU RTL design, and the executing RISC-V code opened in the Synopsys Verdi HW-SW Debug GUI. The
cursor locations demonstrate how simulation time is synchronized between the two sides.

Figure 7: Synopsys Verdi used for combined hardware-software debug

Verification Reference Cookbook
Synopsys also provides a Verification Reference Cookbook for Bluespec RISC-V processors. This features Bluespec's RV32I.MCU.
AXI4.DM processor core and includes the recommended verification methodology to be used with Synopsys tools. Please reach out
to any Synopsys contact for more details.

https://www.synopsys.com/partners/bluespec/vrm-cookbook-bluespec-riscv.html

Pub: May 202305/16/23.CS1103084633-RISV-V-WP.

©2023 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is
available at http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.

Conclusions
This white paper has presented a methodology for RISC-V ISA coverage, using a commercially available Bluespec MCU core as an
example. Advantages of this approach include:

• Seamless integration of RISCV-DV and the readily available ISA functional coverage model

 – Leveraging the robust RISCV-DV setup

 – Providing the verification team a mechanism to gauge the impact of the constrained random tests on coverage

 – Addressing the initial phase of testbench development when custom functional coverage is not yet defined

• Ability to merge functional and code coverage, using Synopsys VCS and Synopsys Verdi to quickly identify coverage holes

A limitation of the current approach is having two testbenches, requiring multiple simulations and adding some maintenance
overhead. Future work will likely include the integration of functional and code coverage into a single testbench.

The combination of RISCV-DV and Synopsys verification tools provides a powerful and flexible solution to RISC-V verification and
coverage. Its value and ease of use has been demonstrated on the Bluespec MCU core, and the methodology developed can easily be
extended for use in verifying any RISC-V processor design. Given the tremendous adoption of this ISA in recent years, having such a
robust solution readily at hand is a benefit for the entire chip industry.

