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Abstract
Differential ray tracing is a well-known technique in geometrical optics. There are a variety of 
applications for this technique. In this paper, the definition for differential ray tracing is given 
and some applications for differential ray tracing in CODE V are presented. General methods for 
computing differential ray information are briefly discussed.

Definition of Differential Ray Tracing
Consider some general optical system. For this system, locate a Cartesian coordinate system 
in the object space and one in the image space (in this paper, image space quantities are 
distinguished by a prime: ´). Now consider some ray through the system, such as the one 
shown in Figure 1.
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Figure 1: This figure illustrates a ray in the object space and image space of a general optical system

In that figure, r0 represents the initial position of the ray (on the plane Z = 0, say), while u0 
represents the initial ray direction. Similar quantities are defined for the image space. In general, 
one can consider the final ray configuration to be a function of the initial ray configuration:

r´(r,u),       u´(r,u)
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These functions can be quite complicated and generally cannot be determined in closed form for anything but the simplest of optical 
systems. Note, however, that it is generally possible to determine the output position and direction of a ray for any given input position 
and direction. That is, given an input ray (with initial position and direction of r0 and u0, for example), one can trace the ray through 
the system to determine its output position and direction (r´0 and u´0, for example). While this discrete ray information allows one to 
perform a variety of analyses on an optical system, for some computations (such as the ones described below), it is convenient to 
have not just discrete ray data, but also to include differential ray data.
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Figure 2: This figure illustrates a ray that is closely spaced about the base ray Differential ray data about the base ray can be used to determine the 
change in the final configuration from the base ray (бr´ and бu´) given the change in the initial configuration (бr and бu).

To understand the differential ray data, consider the ray shown in Figure 1. The differential ray data for this ray allows one to 
determine (approximately) the configuration of all closely spaced rays about this ray (which is henceforth referred to as the base 
ray). This situation is illustrated in Figure 2. A ray that is closely spaced about this base ray is also shown. The change in position and 
direction of the close ray from the base ray

in the object space is labeled as бr and бu, respectively, and for the image space the change is labeled as бr´ and бu´. By including 
differential ray data for the base ray, the configuration of closely spaced rays are determined by means of a linear approximation:

r´(r,u) ≅ r´0 + Aбr + Bбu ⟶ бr´ ≅ Aбr + Bбu  
u´(r,u) ≅ u´0+ Cбr + Dбu  ⟶ бu´ ≅ Cбr + Dбu

The coefficients A, B, C, and D represent the differential ray information a bout the given base ray. Note that in general it takes two 
quantities to specify the position of a ray (e.g., the X and Y coordinates on some plane), and two to specify the direction, so that A, B, 
C, and D are generally not scalars but are themselves 2×2 matrices.

With the differential ray information, one knows not just what a single ray is doing, but there is now a region about the base ray for 
which one knows how rays behave (without having to trace additional rays). This is illustrated schematically in Figure 3.

Also note that the definition of differential ray information is commonly expanded to include quantities that can be easily derived from 
A, B, C, and D, such as the change in the optical length along a close ray from that of the associated base ray. Another way in which 
the definition of differential ray tracing has broadened is also discussed in the following subsection on tolerancing.
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Figure 3: With differential ray information, one knows how rays near the base ray behave without having to trace additional rays

The next section contains a discussion of three applications where differential ray information is used to facilitate computations. This 
is followed by a short description of methods for computing this differential ray information (i.e., the coefficients A, B, C, and D).

Applications of Differential Ray Tracing

First order properties

Differential ray data is commonly used to compute the so-called first-order properties of an optical system (in fact, the first-order 
properties are generally defined in terms of the differential ray data). For rotationally symmetric optical systems, the base ray is 
conventionally taken to correspond with the ray straight down the axis of the system. In this case, the symmetry of the system allows 
the 2×2 matrices A, B, C, and D that represent the differential ray information to be reduced to scalar quantities, A, B, C, and D.

As shown in Figure 4, differential ray information can be used to compute familiar first-order quantities such as the paraxial image 
location and magnification.
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Figure 4: Schematic illustration of the use of differential ray information to determine the paraxial image location  
and the magnification in an optical system

Differential ray information about the axial ray is used similarly to determine the locations of the so-called Cardinal points in an optical 
system, and to determine the approximate size of the illuminated patch on each surface of an optical system.

The situation for systems without symmetry is more complicated in detail but it is conceptually similar: a ray from the center of 
the object through the center of the aperture stop is chosen as the base ray, and differential ray data about this ray is computed. 
Concepts such as image location and focal points generalize but can still be computed from differential ray information[1].

Gaussian beam propagation
The problem of modeling the propagation of Gaussian beams lies in the realm of physical optics. Nonetheless, geometrical optics—
and in particular differential ray data—can be used to model the propagation of Gaussian beams. Consider some Gaussian beam 
that is input into a symmetric system along the axis and say this beam starts with width w and wavefront radius, R. After propagation 
through the system, the beam has width w´ and wavefront radius R´. This is illustrated in Figure 5. Further, say that one has computed 
the differential ray information about the base ray that corresponds with the axis of the system. This differential ray information can 
be used to determine the output beam parameters as a function of the input beam parameters[2].



4

This is commonly done by defining a complex radius of curvature, q, as follows:

where λ is the wavelength of light and i is the square root of negative one. The complex radius of curvature of the Gaussian after 
propagation through the system can be determined from the input Gaussian and the differential ray information as follows:

The width of the output Gaussian and its wavefront radius of curvature then can be determined from the complex radius of curvature.

Finally, note that when the Gaussian is not propagating along the axis, the computation is more involved, but still only involves the 
differential ray information about the central ray of the Gaussian[3].
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Figure 5: A Gaussian beam propagating through a rotationally symmetric system 

Tolerancing
As part of the process of assigning manufacturing tolerances to an optical system, it is necessary to know how rays change when an 
optical system is perturbed. In TOR, CODE V’s fast tolerancing feature, tolerances are generally determined by considering changes 
to wavefronts. Thus, it is the change in the optical path length (OPL) along a ray from a given object point to a given point in the exit 
pupil that is of interest, and not the change of ray position at the image. By collecting these changes in OPL for a variety of rays when 
an optical system is perturbed, the change in image quality can be determined. Based on these changes, acceptable manufacturing 
tolerances are then assigned.

At first glance, it appears that differential ray information may be useful for this process. For example, consider Figure 6. This 
figure shows an optical system in which one of the surfaces has been perturbed (the curvature has gone from c to c+бc, say). A ray 
that starts at a given point on the object and passes through a given point on the exit pupil is shown both for the unperturbed and 
perturbed system. While the picture might suggest   that differential ray information will be useful in determining the change in optical 
path length, it turns out that on account of Fermat’s principle, the differential ray data as defined in this document is not necessary[4]. 
While the details are somewhat involved, it turns out that a good estimate for the change in OPL can be determined simply from the 
change in height of the surface (this is labeled h in Figure 6) and the angle of incidence and refraction for the unperturbed ray:

бOPL = (ncosӨ - n´cosӨ´)h

where n (n´) is the refractive index before (after) the surface. While, strictly speaking, differential ray  information is not used for this 
computation, this approximate form for the change in OPL, which is an integral part of the CODE V tolerancing[5], is often thought of 
as falling under the rubric of differential ray tracing.
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Figure 6: Schematic illustration of a system with a perturbation. A ray through the perturbed system and one through the unperturbed system are 
shown. These rays both start from the same object point and pass through the same point in the exit pupil 

Note that there is a connection between the process of optimization and tolerancing. As such, differential  ray information also is 
used during optimization for some CODE V merit functions[6]. For example, the use of differential ray tracing allows CODE V to realize 
significant gains in efficiency for optimization with MTF-based merit functions[7].

Computing Differential Ray Information
The simplest way to compute differential ray information is to trace a set of real rays that are closely spaced about the base ray and 
use finite differencing to estimate the differential ray information. This is akin to computing the derivative of a function numerically via 
finite differencing, which is illustrated in Figure 7.

For a symmetric system with the base ray going straight down the axis, two additional closely spaced rays are required to determine 
estimates for the differential ray information. In the most general case, four additional rays are required (although similarly to 
conventional finite differencing, more rays can be used to increase the accuracy of the estimates).

While finite differencing provides the simplest means to compute differential ray information, it requires that an appropriate derivative 
increment (i.e., the analog of бx in Figure 7) be specified. This difficulty can be overcome for many optical systems by computing 
the differential ray information exactly[8]. These methods are generally more computationally efficient but require many more lines 
of specialized code (e.g., different code is needed to compute the differential ray information across an aspherical surface than is 
needed for a spherical surface).
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x = x0

Figure 7: Schematic illustration of the concept of finite differencing 

Concluding Remarks
The study of general differential ray tracing goes back well over one hundred years[9] and the techniques involved in computing 
differential ray information are very well understood. In addition to the works cited above, numerous contributions to this field have 
been made by others[10]. These techniques are well understood by the scientists at Synopsys and they have been incorporated 
into CODE V for the applications described above, as well as for other applications in which differential ray information provides 
computational advantages.
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