2021 EOS/ESD Symposium

# Enablement, Evaluation and Extension of a CDM ESD Verification Tool for IC Level

Christian Russ<sup>1</sup>, Kai Esmark<sup>1</sup>, Patrick Huff<sup>1</sup>, Jens Schneider<sup>1</sup>, Gernot Langguth<sup>1</sup>, Lena Zeitlhöfler<sup>2</sup>, Meruzhan Cadjan<sup>3</sup>, Yuri Feinberg<sup>3</sup>

> <sup>1</sup>Infineon Technologies AG, Neubiberg, Germany <sup>2</sup>Technical University of Munich, Munich, Germany <sup>3</sup>Silicon Frontline Inc., San Jose, CA, USA



### Purpose of this Work

- To share experiences in enabling a CDM verification tool for IC design
- To evaluate this tool for its capability to confirm a detected physical failure
- To extend the methodology of the tool for treatment of CDM-relevant inductances
- To match pin-specific CDM-levels between tool and test results

- Setup of CDM Verification Tool
- CDM Case Study: Bus Line Inductance
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

# Introduction (1): CDM Fails but no Explanation... ③

- 3-Million-transistor design, 130nm technology
- Multiple gate oxide failures observed at core RX soon above target CDM level (500V, 6A)

24

- Signals to RX do not cross domain border: intra-domain
- ESRA-CDM: uncritical differences in electric potential within gndd net of 2.2V



### Introduction (2): Intra-Domain Interface, Aggressor vs. Victim



- Setup of CDM Verification Tool
- CDM Case Study: Bus Line Inductance
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

### Setup and Principle of ESRA-CDM Tool

- Technology base info
- Layout (LVS-clean)
- Parasitic resistance extraction
- (vf)TLP curves of ESD elements
- Distribution of initial CDM charges according to layout area
- Circuit simulation of the ESD discharge paths
- Propagation of node voltages and comparison to limits (e.g. max Vgs) of the victims



### ESD Gate Oxide Limits for Victim Devices



- Characterization by TLP and vfTLP for tp=100ns → 1ns
- Focus on Gate-Source and Gate-Drain limits: Vgd=Vgs
- Details on measurement techniques: see full paper
- Suggested margin for design limit and actual voltage for CDM failures
- Notice a flaw in the graphic of figure 6 in the paper: 1ns data is hidden ⊗

- Setup of CDM Verification Tool
- CDM Case Study: Bus Line Inductance
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

### **CDM Case Study**



CDM center frequency around 1 GHz

Input parameter for inductive contribution of bus line

### CDM Case Study - Bus Line Inductance



- Ohmic resistance of top metals has decreased with technology advancement
- Bus lines became narrower → higher inductance
- **CDM** frequency range:  $Z_L > Z_R$

#### Ansys HFSS simulation of VSS bus



### CDM Case Study - Bus Line Inductance





- Experimental demonstration of impact of bus line inductance:
- L=2mm
- 600ps risetime pulse, 7A current
- Voltage transient can be experienced by domain interfaces!

- Setup of CDM Verification Tool
- CDM Case Study
  - Bus Line Inductance
  - Modified Tool Setup
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

### Extended Methodology: Automated Inductance Extraction

Inductance of straight conductor [Kalantarov]:

$$L = \frac{\mu_0 l}{2\pi} \left( \ln \frac{2l}{d+w} + \frac{1}{2} \right) \quad for \quad l \gg d, w$$

Implementation in ESRA-CDM to account for inductive effects in addition to ohmic effects

$$V = \sqrt{V_{ind}^2 + V_{res}^2}$$
 with  $V_{ind} = 2\pi f LI_{path}$  and  $V_{res} = RI_{path}$ 

Manual or automated application to long wires

Quasi-static approach, almost no impact on tool run time



# Localization of Highly Inductive Regions



### **Tool Enhancements for Treatment of Inductance**



#### Analysis of Intra-Domain Issue on Chip Level (2)



- Setup of CDM Verification Tool
- CDM Case Study: Bus Line Inductance
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

# Comparison of CDM Levels: Tool vs. Experiments

| a a a<br>m n m<br>d<br>d        |      | example of discharge pad       |                                         |      |      |      | <ul> <li>Pad-specific ESD robustness</li> <li>Correlation CCTL P.vs. ESPA</li> </ul> |     |      |       |    |  |
|---------------------------------|------|--------------------------------|-----------------------------------------|------|------|------|--------------------------------------------------------------------------------------|-----|------|-------|----|--|
| <ul> <li>X-direction</li> </ul> |      | aggressor location <i>Xa</i> 0 |                                         |      |      |      | Леа                                                                                  |     | CILF | V5 LJ | ĸА |  |
|                                 |      |                                | CCTLP-experiment                        |      |      |      |                                                                                      |     |      |       |    |  |
|                                 | pin  | Xa (um)                        | 4A                                      | 5A   | 6A   | 7A   | 8A                                                                                   | 9A  | 10A  | 11A   |    |  |
|                                 | sclk | 1182                           | pass                                    | pass | pass | pass | pass                                                                                 | n/a | fail | n/a   |    |  |
|                                 | SS   | 1682                           | pass                                    | pass | pass | pass | fail                                                                                 | n/a | fail | n/a   |    |  |
|                                 | si   | 2557                           | pass                                    | pass | fail | fail | fail                                                                                 | n/a | fail | n/a   |    |  |
|                                 |      |                                | Vgs violation by ESRA (in % above 6.0V) |      |      |      |                                                                                      |     |      |       |    |  |
|                                 | pin  | Xa (um)                        | 4A                                      | 5A   | 6A   | 7A   | 8A                                                                                   | 9A  | 10A  | 11A   |    |  |
|                                 | sclk | 1182                           | 0                                       | 8    | 26   | 44   | 63                                                                                   | 80  | 96   | 112   |    |  |
|                                 | SS   | 1682                           | 13                                      | 35   | 59   | 81   | 105                                                                                  | 127 | 147  | 169   |    |  |
|                                 | si   | 2557                           | 56                                      | 90   | 123  | 157  | 191                                                                                  | 221 | 252  | 281   |    |  |

# Comparison of CDM Levels: Tool vs. Experiments

- Correlation between failure current and 90% Vgs violation
- Why 90%?
  - -0% = design limit of 6.0V
  - 90% above limit = 11.4V
  - Actual failure level > design limit
  - Voltage at victim: RC delays, top portion of voltage pulse contributes to actual gox breakdown
- Conservative Vgs design limit still recommended, some relaxation possible



### **Design Improvements**

Small local metal straps between

- vddd1v5: bus  $\leftrightarrow$  core mesh
- gndd1v5: bus  $\leftarrow \rightarrow$  core mesh
- Local interface protection at the receivers
- Metal reinforcements: reduce inductance prevailing over efforts to reduce Ohmic resistances!



- Setup of CDM Verification Tool
- CDM Case Study: Bus Line Inductance
- Extended Tool Methodology: Automated Inductance Extraction
- Comparison of CDM Levels: Tool vs. Experiments
- Conclusions

### Conclusions

#### <u>CDM failure</u> observed despite adherence of existing design rules

- Gate oxide characterization down to nano-second range: <u>careful</u> relaxation of limits possible
- Accounting for <u>inductances in the layout</u>:
  - Focus on inductances which are part of CDM discharge path
  - Several relevant locations detected: pad ring and core hook-up
- Intra-domain problem verified with extended tool methodology
  - Signal lines from pad ring to core transmit large voltage drop; failure of receiver(s)
  - Explanation of CDM robustness depending on pad location and bus length
- Inductance of busses matters because of excessive CDM voltage drops
- Technology trend: inductance dominates over resistive impedance  $Z_L > Z_R$