SYNOPSYS[®]

Synopsys Learning Journeys An easy access guide to your learning

CONFIDENTIAL INFORMATION

The information contained in this presentation is the confidential and proprietary information of Synopsys. You are not permitted to disseminate or use any of the information provided to you in this presentation outside of Synopsys without prior written authorization.

IMPORTANT NOTICE

In the event information in this presentation reflects Synopsys' future plans, such plans are as of the date of this presentation and are subject to change. Synopsys is not obligated to update this presentation or develop the products with the features and functionality discussed in this presentation. Additionally, Synopsys' services and products may only be offered and purchased pursuant to an authorized quote and purchase order or a mutually agreed upon written contract with Synopsys.

Table of Contents

Product-based Journeys

- <u>Custom Compiler</u>
- Design Compiler NXT
- <u>DSO.ai</u>
- <u>ESP</u>
- Formality
- Fusion Compiler
- <u>FC/ICC II Hierarchical Design Planning</u>
- <u>Fusion Platform Methodology</u>
- <u>HAPS</u>
- IC Compiler II
- IC Validator
- Library Compiler
- Language
- LynxNXT

- <u>PrimeLib</u>
- PrimePower
- PrimeSim
- PrimeTime
- <u>Reference Methodology</u>
- RTL Architect
- <u>SaberRD</u>
- <u>Synplify</u>
- <u>StarRC</u>
- <u>TestMAX Advisor</u>
- <u>TestMAX Access</u>
- <u>TestMAX FuSa</u>
- <u>TestMAX Manager</u>
- <u>TestMAX SMS</u>
- <u>TestMAX XLBIST</u>

- <u>Tweaker</u>
- VC Formal
- <u>ZeBu</u>

Role-based Journeys

- Analog Designer
- <u>RF/Transceiver Designer</u>
- Digital Designer
- Physical Designer

Custom		earning Pat	II Analog I	Jesigner
Course 1>	Course 2>	Course 3>	Course 4>	Course 5
Custom Compiler: Foundation I	Custom Compiler: Schematic Entry	PrimeWave Jumpstart	PrimeWave & PrimeSIM SPICE Analog Tutorial	Custom Compiler: Reliability
Custom Compiler Overview	Capturing Schematics	Testbench Setup	OP, DC, Tran Analysis	PrimeSim ResCheck Analysis
Library Manager	Using Advanced Editing features	Parametric Analysis	Loop Stability Analysis	PrimeSim EMIR Reliability Analysis
Data I/0	Generating Symbols	Corner Analysis	Noise Analysis	In-Design EM Aware Layout Implementation
Technology	Schematic Entry	Monte Carlo Analysis	Transient Analysis	In-Design Capacitance Reporting
Design Review Assistant	Advanced Schematic Editing	Dynamic Device Checks	Transient Noise Analysis	In-Design Resistance Checking and Reporting
Unified Constraint Management	Symbol Creation		S-parameter Analysis	Partial Layout Extraction (needs CC Elite license)
	Design Hierarchy		SOA	Layout Dependent Effects
	Working with Text Views		Transient + Monte Carlo Analysis	Voltage Dependent Rule Check
	Parameterized Connections		MOSRA	
	Schematic Overlays			
	Using Estimated Parasitic			
👰 🛴 🛃 🙆 1) 🔘	፼ ፼ ↓ 2	፼ 🔬 🛃 💿 (1) ⊘	🚇 🔬 🛃 🙆 🔍 🔘	🚇 🔬 🛃 💿 😢 🔘

Custom Compiler Learning Path Analog Designer

SYNOPSYS®

Synopsys Confidential Information

Badge

4

Legend

Self-paced Learning

Instructor-Led Training Downloadable Lab Cloud-based Lab (#) Duration in Days пΪ

Custom Compiler Learning Path RF/Transceiver Designer

----> Course 6

Custom Compiler : ICC2 CoDesign

Data Preparation

Analog BlackBox Preparation

Digital Implementation

ICC2 Editing

Capacitance Reporting and Checking

Legend Self-paced Learning لم هفه Instructor-Led Training ,√, Downloadable Lab 6 Cloud-based Lab # Duration in Days (~ Badge

П

Design Compiler NXT Learning Path

Course 1	Course 2	Course 3	Course 4>	Course 5
Design Compiler NXT: Jumpstart	Design Compiler NXT : RTL Synthesis	Design Compiler NXT : Clock Gating Low Power	Design Compiler NXT : DFT Insertion	Design Compiler NXT: SystemVerilog for RTL Design
Introduction	Introduction to DC NXT	Introduction	Introduction	Introduction
Design Setup	Design Setup for Physical Synthesis	Power Analysis	Scan Testing and Flows	SystemVerilog Features
Reading RTL Design	Accessing Design and Library Object	Power Optimization	Test Protocol	Implementing User Logic Intent
Loading Floorplan Data	Constraints: Reg-to-Reg and I/O Timing	Clock Gating	DFT Design Rule Checks	Combinational Logic/Latches
Constraining Design	Advanced Schematic Editing	Advanced Clock Gating	DFT DRC GUI Debug	Meaning of full/parallel
Synthesis Techniques	Input Transition and Output Loading	Self Gating	DRC Fixing	Registers
Post Synthesis Outputs	DC NXT Ultra Synthesis Techniques	Multibit	Top-Down Scan Insertion	State Machine
	Timing Analysis	ICC II Link	Advanced Scan Insertion	Wildcard & Tri-state logic
	Constraints: Multiple Clocks and Exceptions	Reporting	Bottom-up Scan Insertion	Pack/Unpack Array & Struct/Union
	SPG Flow, Congestion, Layout GUI		Export	Interface & Package
	Constraints: Complex Design Considerations		On-Chip Clocking (OCC)	Achieving High QoR-Coding
	Post-Synthesis Output Data		DFTMAX	
	Clk Gating/Leakage Power analysis		Advanced Topics	
🚇 📊 占 💿 112 🎯	🚇 🔬 🕹 🙆 🕥	🚇 🔂 🕹 💿 🌖 🔘	🚇 🚛 🕹 💿 📀 🔘	

Legend Self-paced Learning Learni ۲Ţ

Recommended Learning Journey for a Digital Designer

Course 1>	Course 2>	Course 3>	Course 4	Course 5	4
Library Compiler: Foundation	Design Compiler NXT: Synthesis	Fusion Compiler: Design Creation & Synthesis	Fusion Compiler: Design Implementation	Fusion Compiler: DFT Insertion	
Introduction	Introduction to DC NXT	Introduction & GUI	Floorplanning	Introduction	
Functional Modeling	Design Setup for Physical Synthesis	Reading RTL	Setting up CTS	Scan Testing and Flows	
Timing Modeling	Accessing Design and Library Object	Objects, Attributes, Application Options	Running CTS (CCD & Classic Flow)	Test Protocol	
Low Power Modeling	Constraints: Reg-to-Reg and I/O Timing	Compile Flows and Setup	Routing	DFT Design Rule Checks	
Modeling for Test	Advanced Schematic Editing	NDM Cell Libraries	Routing DRC	DFT DRC GUI Debug	Legend
Library Creation Guidelines	Input Transition and Output Loading	Loading UPF and Floorplan	Via Ladder	DRC Fixing	Self-paced
CCS Modeling	DC NXT Ultra Synthesis Techniques	Timing Setup & OCV	Post-route Optimization	Top-Down Scan Insertion	Self-paced Learning
OCV Modeling	Timing Analysis	CCD Optimization	Signoff	Advanced Scan Insertion	
Check Library	Constraints: Multiple Clocks and Exceptions	Power Optimization		Bottom-up Scan Insertion	Instructor-Led Training ↓↓
Advance Node Features	SPG Flow, Congestion, Layout GUI	Additional Compile Settings and Techniques		Export	Downloadable Lab
Library Analytics	Constraints: Complex Design Considerations			On-Chip Clocking (OCC)	Cloud-based Lab
Physical Library Preparation & Creation	Post-Synthesis Output Data			DFTMAX	(#)
Fusion Library Creation	Clock Gating/Leakage Power Analysis			Advanced Topics	Duration in Days
👰 🛴 🕹 🙆 🔘		🚇 🔛 🕁 💿 🌖 🔘	👰 🔛 🕁 💿 📀 🔘	🚇 🚰 🕹 🙆 📀 🔘	Badge

Synopsys Confidential Information

Recommended Learning Journey for a Digital Designer

Course 6	Course 7>	Course 8	Course 9
Fusion Compiler: SOC Design Planning	Prime Time: Foundation	StarRC: Foundation	IC Validator: User (DRC & LVS)
Initial Design Planning	Introduction to STA in PrimeTime	Extraction Fundamentals	Setup ICV and Run DRC/LVS Testcase
IO Planning	STA Concepts and Flow in PrimeTime	Gate Level Extraction	DRC Error Classification
From Commit to Abstract Creation	Methodology: Qualifying Constraints	Transistor Level Extraction	Execute DRC Testcase with Select Commands
VA and Block Shaping	Methodology: Generating Reports	Selective Netlist	LVL
Macro Placement	Constraining Multiple Clocks	Field Solver	Text Options
PG PPNS	Additional Checks and Constraints	Process Modelling	Generate ICV formatted netlist
Pin Placement	Correlation: POCV and AWP Analysis	Metal Fills	Generate Equivalence Options
Timing and Budgeting	Signoff: Path Based Analysis (PBA)		Debug LVS Errors
Integration/Assembly	Signal Integrity: Crosstalk Delay Analysis		Using Short Finder
	Signal Integrity: Crosstalk Noise Analysis		
	Timing Closure: ECO/What If Analysis		
	Large Data: DMSA and Hyperscale Analysis		
	🗐 🚛 🕁 💿 (3) 🔘		🚇 🚰 🕁 💿 2 🔘

Synopsys Confidential Information

Recommended Learning Journey for a Digital Designer

Course 10		Course 11	Course 12
IC Validator: Runset		Reference Methodology: Jumpstart	Fusion Platform Methodology: Jumpstart
Overview	Compare	Introduction & Overview	Introduction & Overview
Language Introduction	Benefits of New Language	Organization & Structure	Organization & Structure
Command API	PXL Compare Syntax Strategy	Running RM	Lab Example
Writing a Simple "Flat" Rule Runset	Anatomy of Compare Functions	Demo	Installation & Setup
Running a Simple IC Validator Runset	Complementary Compare Functions		FCRM for FPM Users
Advanced Programming Concepts	User-defined Functions		FAQ – Common Topics
IC Validator API Header Files	StarRC Transistor-level Extraction Flow		
Runset Coding Practices			
Layout Device Extraction			
Benefits of New Language			
Runset Structure			
Anatomy of Device Extraction Functions			
Property Calculation			
User-defined Property Functions	🚇 🚰 난 💿 ③ ⊘	👰 掘 날 💿 🕡 🔘	👰 🛴 占 🙆 🕖 🔘

Synopsys Confidential Information

Custom Compiler Learning Path RF/Transceiver Designer Course 1 -----Course 2 -----Course 3 -----> Course 4 — Course 5 Custom Compiler: **Custom Compiler:** Custom Compiler: Basic **Custom Compiler: Custom Compiler:** Accelerated Layout Layout Design Reliability Automated Layout Design Foundation I Decian Schematic Driven Lavout **Custom Compiler Overview** Layout Design Entry **Placement Assistant** PrimeSim ResCheck Analysis (SDL) Initialization **Abutment & Align Functions** SDL Placement with PrimeSim EMIR Reliability Library Manager **Pin Placer Advanced Editing Functions Connectivity Use** Analysis SDL ECO & Cross Object In-Design EM Aware Layout Data I/0 **Hierarchical Design Creation Block Placer** Referencing Implementation In-Design Capacitance **Connectivity Engine Placement Advanced** Technology Router Introduction Reporting In-Design Resistance **Design Review Assistant** Abstract Generation Symbolic Editor Pattern Router Legend Checking and Reporting Unified Constraint Partial Layout Extraction Visually Assisted Automation Design Rule Aware Editing Interactive Router Management (needs CC Elite license) Self-paced **Template Manager** Mcell Guard Ring Layout Dependent Effects Auto Router Learning ر م Voltage Dependent Rule Advanced Node Support Shielding Check Instructor-Led Multi Pattern Technology Training Scripting ,√, User Defined Devices (UDD) Antenna Rule Support Downloadable Lab **Physical Verification** 6 **Technology Enablement** Cloud-based Lab **Parasitic Extraction** # Duration in Days $\langle \mathcal{N} \rangle$ Badge

synopsys°

Synopsys Confidential Information

{⊘}

Badge

Legend

Self-paced Learning

Instructor-Led Training United Training United Training United Training Downloadable Lab Cloud-based Lab (#) Duration in Days $\widehat{\mathbb{A}}$

DSO.ai Learning Path

Course 1

DSO: Foundation

Introduction

Cold Start

Warm Start

👰 🔐 上 🙆 112 🔘

ESP Learning Path

Course 1

ESP: Jumpstart

Introduction

Symbolic Simulations

Functional Accuracy

PIV Introduction

' L

SYNO	PSYS [®]
------	-------------------

Formality Learning Path

	Course 2
Formality: Jumpstart	Formality: Foundation
Overview	Introduction to Equivalency checking
SVF Guidance	Concept & Step
Design Read	Simple Logic Cones & Failing Points
Setup for Verification	Multi-Stage Verification & SVF
Match and Verify	Multi-Voltage Designs & UPF
Debugging	Hard Verifications & SVP
Formality Lab	Efficient Debugging
	RTL & Netlist Interpretation
	Sequential Design Transforms & SVF
	Other Design Transforms & SVF
	Conclusion

Fusion Compiler Learning Path

Course 1	Course 2	Course 3	Course 4	Course 5
Fusion Compiler: Jumpstart	Fusion Compiler: Design Creation & Synthesis	Fusion Compiler: Design Implementation	Fusion Compiler: DFT Synthesis	Fusion Compiler: UPF
Introduction	Introduction & GUI	Floorplanning	Introduction	Introduction to UPF
Design Setup and Reading RTL Design	Reading RTL	Setting up CTS	Scan Testing and Flows	Power Domains
NDMs/CLIBS	Objects, Attributes, Application Options	Running CTS (CCD+classic flow)	Test Protocol	Power Strategies
Floorplan and UPF data	Compile Flows and Setup	Routing	DFT Design Rule Checks	Supply Network
Compile Flow	NDM Cell Libraries	Routing DRC	DFT DRC GUI Debug	Power States
Timing Setup and CCD	Loading UPF and Floorplan	Via Ladder	DRC Fixing	Fusion Compiler and UPF
Power Optimization	Timing Setup & OCV	Post-route Optimization	Top-Down Scan Insertion	Fusion Compiler Reporting
Top Level Synthesis	CCD Optimization	Signoff	Advanced Scan Insertion	
Design Implementation	Power Optimization		Bottom-up Scan Insertion	
	Additional Compile Settings and Techniques		Export	
	Hierarchical Synthesis		On-Chip Clocking (OCC)	
			DFTMAX	
			Advanced Topics	
👰 🚛 🕹 💿 🔞 🔘	👰 🔛 🕁 💿 🏐	🚇 艇 🕁 💿 (2) 🔘	👰 🛴 🕹 💿 📀 🔘	🖳 🕹 💿 📀 🔘

SYNOPSYS®

Badge

Legend

Self-paced Learning

Instructor-Led Training Downloadable Lab Cloud-based Lab (#) Duration in Days

FC/ICC II Hierarchical Design Planning Learning Path

Course 1

Fusion Compiler: SOC Design Planning

Initial Design Planning

IO Planning

From Commit to Abstract Creation

VA and Block Shaping

Macro Placement

PG PPNS

Pin Placement

Timing and Budgeting

Integration/Assembly

Fusion Platform Methodology Learning Path

Course 1

Fusion Platform Methodology: Jumpstart

Introduction & Overview

Organization & Structure

Lab Example

Installation & Setup

FCRM for FPM Users

FAQ – Common Topics

HAPS® Hardware Learning Path

Course 1	Course 2
HAPS-80: Hardware and ProtoCompiler	HAPS-100: Hardware and ProtoCompiler
Hardware Overview	Hardware Overview
System Clocks	System Clocks
HapsTrak3 Connectors	HapsTrak3 Connectors
Daughter Board and Cables	UMRBus 3.0 Overview
Rack Mounting Solution	Daughter Boards and Cables
Confpro	HAPS ProtoCompiler Flow
HAPS ProtoCompiler Flow	Database Concepts
Database Concepts	HAPS ProtoCompiler Flow Overview
HAPS ProtoCompiler Flow Overview	Graphical User Interface
Graphical User Interface	Introduction to Debug
Introduction to Debug	

IC Compiler II Learning Path

Course 1	Cour	se 2
IC Compiler II: Jumpstart	IC Compiler II: Block Level Implementation	
Introduction	GUI Usage (lab)	Signoff
Design/Timing Setup	Objects, Attributes, Application Options	
NDMs/CLIBS	Floorplanning	
Floorplan	Placement	
Placement & Optimization	NDM Cell Libraries	
Clock Tree Synthesis	Design Setup	
Routing	Timing Setup	
Top Level Synthesis	Setting up CTS	
Design Implementation	Running CTS (CCD+classic flow)	
	Routing	
	Routing DRC	
	Via Ladder	
	Post-route Optimization	
👰 🔂 🕹 🙆 🔞	Top Level Implementation	👰 🚰 🕁 💿 3 🔘

SYNOPSYS®

IC Validator Learning Path

Course 1>	Course 2		Course 3
IC Validator: User (DRC & LVS)	IC Validator: Runset		IC Validatro: DRC Runset
Setup ICV and run DRC/LVS testcase	Overview	Compare	Writing a basic "single file" runset
DRC Error Classification	Language introduction	Benefits of new language	Writing debug output to OASIS/GDS Using Layer
Execute DRC testcase with select commands	Command API	PXL compare syntax strategy	Debugger Understanding Error
LVL	Writing a simple "flat" rule runset	Anatomy of compare functions	Messages & Using Diagnostic Functions
Edtext options	Running a simple IC Validator runset	Complementary compare functions	Options Functions
Generate ICV formatted netlist	Advanced programming concepts	User-defined functions	
Generate equivalence options	IC Validator API header files	StarRC transistor-level extraction flow	
Debug LVS errors	Runset coding practices		
Using Short finder	Layout device extraction		
Using VUE & ICVWB with ICV	Benefits of new language		
	Runset structure		
	Anatomy of device extraction functions		
	Property calculation		
🚇 🚰 🕁 🙆 2 🔘	User-defined property functions	🚇 🚰 🕁 🙆 🕄 🔘	👰 🛴 🕹 💿 (1) 🤅

Synopsys Confidential Information

Library Compiler Learning Path

Course 1

Language Learning Path

Course 1	Course 2	Co	ourse 3	Course 4
Language: SVA Formal Verification	Language: System Verilog Assertion	Language: System	Verilog for RTL Design	Language: System Verilog Testbench
Introduction to SVA	Introduction	Basic System Verilog Features	Achieving High QoR Through Coding	The Device Under Test
Formal Testbench	Types of Assertions	Implementing User Logic Intent (combinatorial logic &		System Verilog Verification Environment
Coding Recommendation – Do's and Don'ts	Action Blocks	latch)		System Verilog Testbench Language Basics - 1
Resources	Disabling/Combining/Embedd ing Assertions	Implementing User Logic Intent (meaning of full and parallel)		System Verilog Testbench Language Basics - 2
	Controlling Assertions	Implementing User Logic		Managing Concurrency in System Verilog
	Sequences and Sequence Repetition	Intent (implementing registers)		Object-Oriented Programming: Encapsulation
	Sequences Operators	Implementing User Logic Intent (implementing state		Object-Oriented Programming: Randomization
	Synthesis Assertion Coverage	machines)		Voltage Dependent Rule Check
	Assertion Libraries	Intent (wildcard and tri-state logic)		Object-Oriented Programming: Inheritance
		Advanced System Verilog Features (packed or unpacked array and struct)		Inter-Thread Communications
		Advanced System Verilog		Functional Coverage
		Features (System Verilog interface)		System Verilog UVM preview
👰 🚘 🕹 💿 🛈 🎯	👰 🔛 🕁 💿 🕦 🔘	Advanced System Verilog Features (System Verilog package)	👰 🔂 🕁 💿 🕦 🔘	🚇 🚰 🕂 💿 3 🛇

Legend

Synopsys°

Language Learning Path

Course 5

Language: System Verilog Verification using UVM

System Verilog OOP Inheritance Review

UVM Structural Overview

Modeling Stimulus (UVM Transactions)

Creating Stimulus Sequences (UVM Sequence)

Component Configuration and Factory

TLM Communications

Scoreboard & Coverage

UVM Callback

Advance Sequence/Sequencer

Phasing and Objections

Register Layer Abstraction (RAL)

Summary

Legend

LynxNXT Learning Path

Course 1

LynxNXT: Foundation

Introduction

Variable Editor

Flow Editor

Execution Monitor

Failure Debug

Exploration

Command Line Interface

Working with FPM

ПÌ

PrimeLib Learning Path

Course 1

PrimeLib: Foundation

Tool Introduction

Global Setting to start characterization

Cell Level Setting to Configure Arcs

Different Characterization flow

Creating multiple Connect Database

Debugging and Troubleshooting

Complex Cell Characterization

Timing Characterization

Constraint Timing Characterization

Power Characterization

Legend

PrimePower Learning Path

Course 1		Course 2		
	PrimePower: Jumpstart	PrimePower: Foundation		
F	Power Analysis Input	Introduction	PrimePower – Session Based Flow	
F	Power Components	Power Analysis	Check & Report Power	
L	eakage Power	Power Components	Report Switching Activity	
h	nternal Power	Leakage Power	Summary	
S	Switching Power	Internal Power		
	nputs & Outputs of Power Analysis	Switching Power		
	Simulation Activity Files	Leakage & Internal Power Data		
F	Flow & Report	Input & Outputs of Power Analysis		
		PrimePower Analysis Modes		
		Simulation Activity Files		
		RTL Activity Flow		
		Gate-Level Activity Flow		
		PrimePower Analysis Accuracy		
		PrimePower Standalone – ASCII Flow		
_				

Synopsys®

PrimeSim Learning Path

Course 1	Course 2	Course 3	Course 4
PrimeSim: Jumpstart	PrimeSim: Foundation	PrimeSim: Advance	PrimeSim: Advance
PrimeSim Static CCK Introduction	PrimeSim XA Introduction	CCK Advanced ERC and ESD Checks	Interactive Mode
PrimeSim CCK Built-In Checks	PrimeSim XA Netlist format Support	CCK Propagation Engine – XPL and Analog Propagation	Distributed Processing
PrimeSim CCK Interactive Debugging Commands	PrimeSim XA Analyses support	CCK Custom Programmable Checks	Monte-Carlo (MC)
PrimeSim CCK False Error Pruning	Command/Option Usage & Precedence Rules	Custom Check Assertion	MOSRA
Custom Compiler – PrimeSim CCK : Setup and run	PrimeSim XA Post-Layout Simulation	GUI : Cross-Probe, Filtering, Waiver, Grouping, export	Aging and Self-Heating
	PrimeSim XA Command Line Usage		
	PrimeSim XA Log File Details		
	Accuracy and Speed Trade- off		
	Back-Annotation & XBA		
	Probing in PrimeSim XA		
	PrimeSim XA .ALTER Usage		
	PrimeSim XA .DATA Usage		
👰 🛴 上 🙆 fi2 🔘	👰 🚰 🛃 🙆 2 🔘		👰 🚰 🕹 🙆 🕦 🔘

Synopsys Confidential Information

PrimeTime Learning Path

Course 1	Course 2	Course 3	Course 4	
PrimeTime: Jumpstart	PrimeTime: Foundation	PrimeTime: HyperScale	PrimeTime: Scalable STA	
Overview	Introduction to STA in PrimeTime	Introduction HyperScale	Hierarchical Methodologies	
PrimeTime Implementation Flow	STA Concepts and Flow in PrimeTime	Flat Context Flow	HyperScale	
PrimeTime Inputs & Outputs	Methodology: Qualifying Constraints	Bottom Up Flow	HyperScale Hybrid Flow	
Timing Analysis Flow	Methodology: Generating Reports	Generating HyperScale Block Models	Distributed & Scenario Analysis	
Load Design & Check	Constraining Multiple Clocks	Constraint Consistency	HyperGrid	
Load Library & Check	Additional Checks and Constraints	Clock Mapping	DMSA	
Read Parasitic & Check	Correlation: POCV and AWP Analysis	HyperScale Top-Down Flow	DVFA/SMVA	
Source Constraints & Check	Signoff: Path Based Analysis (PBA)	HyperScale-Driven ECO	PBA Technologies	
Constraints Completeness	Signal Integrity: Crosstalk Delay Analysis	Summary	Best Practices	
Coverage Analysis	Signal Integrity: Crosstalk Noise Analysis			
Report	Timing Closure: ECO/What If Analysis			
Saving & Exit	Large Data: DMSA and Hyperscale Analysis			
🚇 🔬 🕹 💿 112 🔘				

Synopsys Confidential Information

Recommend Learning Journey: Physical Designer

Course 1	Course 2>	Course 3	Course 4	Course 5
Fusion Compiler: Jumpstart	Fusion Compiler: Design Creation & Synthesis	Fusion Compiler: Design Implementation	Fusion Compiler: DFT Synthesis	Fusion Compiler: SOC Design Planning
Introduction	Introduction & GUI	Floorplanning	Introduction	Initial Design Planning
Design Setup and Reading RTL Design	Reading RTL	Setting up CTS	Scan Testing and Flows	IO Planning
NDMs/CLIBS	Objects, Attributes, Application Options	Running CTS (CCD+classic flow)	Test Protocol	From Commit to Abstract Creation
Floorplan and UPF data	Compile Flows and Setup	Routing	DFT Design Rule Checks	VA and Block Shaping
Compile Flow	NDM Cell Libraries	Routing DRC	DFT DRC GUI Debug	Macro Placement
Timing Setup and CCD	Loading UPF and Floorplan	Via Ladder	DRC Fixing	PG PPNS
Power Optimization	Timing Setup & OCV	Post-route Optimization	Top-Down Scan Insertion	Pin Placement
Top Level Synthesis	CCD Optimization	Signoff	Advanced Scan Insertion	Timing and Budgeting
Design Implementation	Power Optimization		Bottom-up Scan Insertion	Integration/Assembly
	Additional Compile Settings and Techniques		Export	
	Hierarchical Synthesis		On-Chip Clocking (OCC)	
			DFTMAX	
			Advanced Topics	
👰 🚛 🕹 💿 🕡	👰 🏭 🕁 💿 🏐	👰 🔛 🕁 💿 2 🎯	🚇 🔛 🕁 💿 (2) 🎯	👰 🔛 🕁 💿 🔇

Recommend Learning Journey: Physical Designer

Course 6	Course 7
Fusion Compiler: UPF Fundamental	Reference Methodology: Jumpstart
Introduction UPF	Introduction & Overview
Power Domains	Organization & Structure
Power Strategies	Running RM
Supply Network	Demo
Power States	
Fusion Compiler and UPF	

Synopsys°

Reference Methodology Learning Path

Course 1

Reference Methodology: Jumpstart

Introduction & Overview

Organization & Structure

Running RM

Demo

RTL Architect Learning Path

Course 1>	Course 2
RTL Architect: Jumpstart	RTL Architect: Using RTL Restructuring
Introduction & Overview	RTL Restructuring
RTL Architect Key Features	Group
Predictive Engine	Ungroup
Unified GUI	Reparent
Physical Floorplaning	Restructured RTL, SDC, UPF, SAIF Generation
Power Analysis	Reparenting and Writing RTL
Logic Restructuring	Demo
Constraint Management	
Flows	
rtl_opt Mega Command	
Block-Level Flow/Breakpoints	
Hierarchical Flow/Breakpoints	

Legend Self-paced Learning Instructor-Led Training ,√, Downloadable Lab (0) Cloud-based Lab # Duration in Days \bigcirc Badge

П

Synopsys°

© 2023 Synopsys, Inc. 32

StarRC Learning Path

Course 1	Course 2	
StarRC: Jumpstart	StarRC: Foundation	
Interconnect	Extraction Fundamentals	
Coupling Capacitance	Gate level Extraction	
Classes of Extractors	Transistor Level Extraction	
Input for Parasitic Extraction	Selective Netlist	
StarRC Flow	Field Solver	
SMC Flow	Process Modelling	
ITF File	Metal Fills	

Legend

Synopsys®

	Bad	ge
© 2023	Synopsys,	Inc.

SaberRD Learning Path

Course 1

SanerRD: Foundation Training Series

Timing Domain Analysis				
Schematic Capture & Parts Library				
Operating Points & Small Signal Frequency Analysis				
Test Automation				
Design Optimization				
Introduction to Modeling				
Import SPICE Models				
Modeling with Table Look-Up				
Modeling with StateAMS				
Robust Design & Sensitivity Analysis				
Monte Carlo & Pareto				
Worst-Case Analysis				
Fault Analysis				
Stress Analysis	<u>B</u>	^ 		3

Legend

ПÌ

Synplify: Learning Path

Course 1

Synplify: Foundation

Introduction to Synplify Elite Flow

Creating and Running Synplify Project

View Log File

HDL Analyst

Handling High Reliability Designs

Implementing Fault Tolerant FSMs

ECC RAM Inferring

Importing Quartus IP in Synplify Projects

Debugging with SpyGlass

Debugging with VCS

Identify Instrumentor and Debugger

п

TestMAX Advisor Learning Path

Course 1

TestMAX: Jumpstart

Early Testability Goals and Reports

Debug using the GUI

Transition Delay Checks

Random Resistant Fault Analysis and Test Points

Post stitch DRC Checks

Connectivity Checks

Flow With TestMAX Manager

TestMAX Access Learning Path

Course 1>	Course 2
TestMAX: Jumpstart	TestMAX: ATPG
	Monufacturing Test and
TestMAX Access structure	Manufacturing Test and ATPG
IEEE 1687 interface to drive internal instruments through	Building ATPG Models
TDR	Running DRC
SIBs	Fault Models and Managing Faults
Define Ring configuration	Controlling ATPG
Definition of Server and Subserver	Post ATPG Analysis
AIT	Pattern Validation
PDL Pattern Porting	At-Speed Testing and Constraints
PDL data packetization	Transition Delay Testing
Validation of AIT	On-Chip Clocking and Compression
	Path Delay Testing
	Power Aware ATPT
	Conclusion

Synopsys°

TestMAX FuSa Learning Path

Course 1

TestMAX FuSa: Jumpstart

Functional Safety for Automotive Designs

TestMAX FuSa: Introduction

TestMAX FuSa: Static FuSa Analysis

Running TestMAX FuSa: Requirement & Constraints

Functional Safety reporting in TestMAX FuSa

п

TestMAX Manager Learning Path

Course 1

TestMAX Manager: Jumpstart

Launching and Configuring tool

Objects, Attributes, Application Options

NDM Cell Libraries

Timing Setup

TestMAX SMS Learning Path

Course 1

TestMAX-SMS: Architecture

Introduction

SMS Wrapper

SMS Processor

MMB Processor

SMS Server

Conclusion

пÌ

TestMAX XLBIST Learning Path

Course 1

TestMAX XI BIST: lumostart

I ESTIMAX XLB	IST: Jumpstart
LogicBIST basics	Troubleshooting and Debug hints
XLBIST architecture	Intro to AIT
XLBIST and SEQ modes of operation	
IEEE 1500 I/F and internal resources	
XLBIST patterns and interval definition	
Random Resistant Fault analysis and Test Point insertion	
X propagation analysis and fixing	
OCC and Clock Weights	
Reset Controller and Reset Weights	
Programmable SE Timing Margin	
Remap XLBIST Patterns for Debug and Diagnosis	
Validation of XLBIST patterns	
Porting of XLBIST patterns	
Simulation steps for validation	🚇 🚛 🕹 🙆 2 🍥

SYNOPSYS®

Tweaker Learning Path

Course 1

Tweaker: ECO

ECO Flow and Interoperability

Basic ECO Flow

Timing ECO

Useful Skew Clock ECO

Power ECO

Area Recovery

Reliability Recovery

Advanced ECO Features

Hierarchy Design Flow

П

Synopsys°

VC Formal Learning Path

Course 1

VC Formal: Foundation

Introduction

Formal Verification Methodology

SVA for Formal Verification

VC Formal Basic

VC Formal Navigator

Legend Self-paced Learning Instructor-Led Training **,**↓, Downloadable Lab $\langle \mathbf{O} \rangle$ Cloud-based Lab (# Duration in Days {(~) Badge

П

Zebu Learning Path

Course 1>	Course 2
Zebu: Foundation	Zebu: Advanced
Introduction to Emulation	Transactors – Guide to integration + List
ZeBu overview (HW and SW)	Low Power emulation
ZeBu Ecosystem	Virtual Host and Devices
ZeBu Compile	ZeBu Debug
ZeBu Runtime	Hybrid Emulation
Tuning ZeBu for High Performance / TAT / Capacity	ZeBu Empower – SW based power analysis
Gate Level emulation	Real world interfaces with speed adaptors

П

