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Need for Edge AI

• Latency – enable real-time AI systems

• QoS – cannot rely on connectivity in 
remote areas

• Security – sending data over network 
not secure

• Privacy – keep private data locally on 
device

• Bandwidth – send “information” to 
cloud rather than “data”

• Cost – data communication is costly

Edge 
AI
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But Edge AI is different!

Smaller neural network models

Smaller batch sizes (≈ 1)

Edge devices are cost, area and size limited

Edge devices need to support both AI and non-AI applications

Edge processors lack support for Keras, PyTorch, MXNet etc.
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AI-RISC

Custom RISC-V processor with ISA 
extensions targeting AI applications 

Tightly integrated AI accelerators for 
fine-grained offloading of AI tasks

End-to-end hardware/software co-
design solution

Support for AI and non-AI 
applications on the same processor
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Tightly Integrated AFU
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AI extensions
Grouped by corresponding AI Functional Units (AFU)

• Instructions in bold are already implemented

• All instructions utilize RISC-V CUSTOM-2 opcode space
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AI extensions – General 

• MAC

• Packed SIMD MAC

• Quantize
• Accelerates cast and recast

• Accelerate conditional clipping

• Transpose 
• Accelerates data layout changes 

• Post increment ld/st
• Already implemented in ASIP Designer RISC-V example

• Hardware loops
• Already implemented in ASIP Designer RISC-V example
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Preliminary Results with MAC Instruction 

ResNet-8 TinyMLPerf Benchmark network on CIFAR-10 dataset
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AI extensions – Matrix AFU 

• Matrix data type
• Vector of 8 elements with each element of 8 bits → 64 bits wide

• GEMM instructions
• 2x4 * 4x2 → 2x2 result, 16 bits

• Planned – 4x2 * 2x4 – require double/quad register for result

• GEMV instructions
• 1x4 * 4x2

• 2x4 * 4x1

• Vector-Vector multiplication
• 1x8 * 8x1
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AI extensions – PIM VMM AFU 

• vmm.ld
• Load results from PIM memory

• vmm.sd
• Store weights to PIM memory

• vmm
• Perform in-memory VMM operation

• 1x8 * 8x8

• 1x16 * 16x16
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Preliminary Results with PIM VMM Instruction

Baseline – Simple C 
program implementing 
VMM as nested ‘for’ loops

Custom VMM instructions 
exposed to C via compiler 
intrinsics 

1.6x better performance 
than writing Assembly

x

x

Manuscript under preparation
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Planned AI extensions – Activation AFU

Hardware support for activation functions

• ReLU

• Sigmoid

• Tanh

• Swish
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Planned AI extensions – Systolic AFU 

• Load weights into the systolic array

• Store output activations – from systolic array to processor 
registers/scratchpad

• Prepare input activations – pre-processing instructions 

• Systolic MAC

• Flush weights / stop
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2-step Compiler & Issues
Solved by hardware designers
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Hardware/Software Co-design

✓End-to-end design methodology 
• TVM on the frontend

• Synopsys ASIP Designer on the backend

✓Support for multiple Domain Specific 
Language (DSL) frontends - Pytorch, 
MXNet, TFLite, Tensorflow, DarkNet etc.

✓Verified with both 32 and 64-bit RISC-V

✓Quantization support
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ASIP Designer Enhancements
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Compilers are hard!

➢ 2-step compilation – TVM + ASIP Designer generated C compiler

➢ Goal is to have no/minimum interaction with TVM generated C code

• Problem 1 – ASIP Compiler is not smart 
enough to detect opportunities for 
complex instructions like VMM, GEMM etc.

• Works well for simple instructions like 
MAC.

• Solution - Expose new instructions to TVM 
via compiler intrinsics.
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Compiler issues with custom instructions

• Problem 2 – Breaking the convolution schedule leads to accuracy 
issues.

• Issue 1 – Wrong allocation of operands
• Solved by TVM buffer and strided access of operands from bigger matrix

• Issue 2 – Wrong data type in quantized NN
• Defined input/output data types in TVM hardware intrinsic call

• 8-bit inputs and 16/32-bit accumulated result.

• Issue 3 – Kernel and Input data layout
• TVM supports only a few Input/Filter layouts with specific ISA.

• Adding support for required Input-Filter layout combinations in TVM for C 
hardware target used in AI-RISC.
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More Compiler issues

• Problem 3 – TVM support for breaking the convolution computation 
to match custom extension kernel size is limited.
• TVM throws random errors when breaking the computation schedule using 

“tensorize”  schedule pass.

• Exact same convolution works with tensorize as a standalone kernel but not 
as a part of neural network.

• Solution – Trying to debug the exact issue but till we find a reliable 
solution we work with what we have.
• Breaking the computation schedule into error-free parts and adapting the 

custom instructions accordingly for testing purposes.
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TVM generated C code
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Chess compiler intrinsic
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Chess_view rule
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Instruction definition nML
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Compiled assembly with new instructions
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Emulation/Definition of AFU
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Instructions through instruction viewer

vv8dn@virginia.edu 27



Results
Performance improvements with AI-RISC
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Evaluation Methodology

• Benchmark
• ResNet-8 from TinyMLPerf

• GEMV kernel

• Baseline
• 5-stage in-order 64-bit RISC-V RV64IMC 

• Compilation
• TVM (TFLite to C) + Custom C compiler (C to binary)

• Simulation Framework
• Cycle-accurate Simulator
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Speedup on GEMV kernel

• A Matrix → 8x8
• B Vector → 1x8
• Input datatype → int8
• Output datatype → int16
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Speedup on single CONV2D kernel

• Input image → 7x7
• Input channels → 8
• Filter → 2x2
• Output channels → 2
• Input datatype → int8
• Output datatype → int16
• data_layout→ NHWC
• kernel_layout→ HWIO
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Speedup on ResNet-8 network from TinyMLPerf
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Design-Space Exploration for PIM VMM
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Area Overhead
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FoM for optimal PIM size

Figure of Merit = Performance gain / Area Overhead
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Vector “V” extension addition to AI-RISC

• Undergrad project by Nate Hunter, Noah Mills, Greg Vavoso and Bill Yang.

• Subset of Vector extension instructions added to AI-RISC:
• Addition and Subtraction

• Logical AND/OR/XOR/MIN/MAX

• Shift and Move

• Multiplication 
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Summary

AI-RISC = Custom RISC-V processor for Edge AI

Tightly integrated AI Functional Units (AFU)

Custom ISA extensions to RISC-V

Complete SDK generation including compiler support for PyTorch, TensorFlow etc.

Speedup compared to RV64IMC → 17.6x for GEMV, 4.4x for ResNet-8 

Scalable, flexible and support for both AI and non-AI applications
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Publications
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San Francisco, CA, December 2021.

• V. Verma, T. Tracy, M. Stan, “EXTREM-EDGE - EXtensions To RISC-V for Energy-efficient ML 
inference at the EDGE of IoT,” The 12th International Green and Sustainable Computing 
Conference (IGSC), October 2021.

• V. Verma, M. Stan, “AI-RISC: Extending RISC-V with tightly integrated accelerators and custom 
instructions for AI inference at the Edge of IoT,” IBM IEEE CAS/EDS - AI Compute Symposium 
(AICS),October 2021.

• V. Verma, M. Stan, “AI-RISC: Scalable open source processor for AI applications at edge of 
IoT,” Design Automation Conference Young Student Fellow Program poster session (DAC 
YFP), July 2020. (Best Poster Award)
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Questions?

• This work is funded by SRC under GRC AIHW task 2945.001.
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