
AI-RISC - Scalable RISC-V Processor
with Tightly Integrated AI Accelerators

and Custom Instruction Extensions

Vaibhav Verma and Mircea R. Stan

High-Performance Low-Power Lab (HPLP)

University of Virginia

vv8dn@virginia.edu

Need for Edge AI

• Latency – enable real-time AI systems

• QoS – cannot rely on connectivity in
remote areas

• Security – sending data over network
not secure

• Privacy – keep private data locally on
device

• Bandwidth – send “information” to
cloud rather than “data”

• Cost – data communication is costly

Edge
AI

vv8dn@virginia.edu 2

But Edge AI is different!

Smaller neural network models

Smaller batch sizes (≈ 1)

Edge devices are cost, area and size limited

Edge devices need to support both AI and non-AI applications

Edge processors lack support for Keras, PyTorch, MXNet etc.

vv8dn@virginia.edu 3

AI-RISC

Custom RISC-V processor with ISA
extensions targeting AI applications

Tightly integrated AI accelerators for
fine-grained offloading of AI tasks

End-to-end hardware/software co-
design solution

Support for AI and non-AI
applications on the same processor

vv8dn@virginia.edu 4

AI Functional Unit (AFU)
CPU APU

Memory

Coprocessor

CPU

Memory

AFU

CPU Functional Unit

CPU

Memory

In-memory APU

APU

CPU

APU

3D Memory with APU

Memory

Image adapted from PRIME, ISCA 2016

APU = Coarse-
grained AI
Processing
Unit

AFU = Fine-
grained AI
Functional
Unit

vv8dn@virginia.edu 5

Tightly Integrated AFU

Fetch Decode Execute Memory Writeback

Instruction
Memory

Data
Memory

Register File

Fetched
Instruction

Decode ALU LD/ST Writeback

MAC AFU

PIM/Matrix
AFU

Activation
AFU

PIM
Memory

vv8dn@virginia.edu 6

AI extensions
Grouped by corresponding AI Functional Units (AFU)

• Instructions in bold are already implemented

• All instructions utilize RISC-V CUSTOM-2 opcode space

vv8dn@virginia.edu 7

AI extensions – General

• MAC

• Packed SIMD MAC

• Quantize
• Accelerates cast and recast

• Accelerate conditional clipping

• Transpose
• Accelerates data layout changes

• Post increment ld/st
• Already implemented in ASIP Designer RISC-V example

• Hardware loops
• Already implemented in ASIP Designer RISC-V example

vv8dn@virginia.edu 8

Preliminary Results with MAC Instruction

ResNet-8 TinyMLPerf Benchmark network on CIFAR-10 dataset

Quantized to int8

14%

20%

0%

5%

10%

15%

20%

25%

32-bit 5 stage pipeline RISC-V 64-bit 5 stage pipeline RISC-V

Instruction Count Improvement with
MAC

TensorFlow
Lite

TVM
C source

code
ASIP

Designer
Compiled

binary

IGSC 2021 vv8dn@virginia.edu 9

Scalar MAC SIMD MAC (4 lanes)

AI extensions – Matrix AFU

• Matrix data type
• Vector of 8 elements with each element of 8 bits → 64 bits wide

• GEMM instructions
• 2x4 * 4x2 → 2x2 result, 16 bits

• Planned – 4x2 * 2x4 – require double/quad register for result

• GEMV instructions
• 1x4 * 4x2

• 2x4 * 4x1

• Vector-Vector multiplication
• 1x8 * 8x1

vv8dn@virginia.edu 10

AI extensions – PIM VMM AFU

• vmm.ld
• Load results from PIM memory

• vmm.sd
• Store weights to PIM memory

• vmm
• Perform in-memory VMM operation

• 1x8 * 8x8

• 1x16 * 16x16

vv8dn@virginia.edu 11

Preliminary Results with PIM VMM Instruction

Baseline – Simple C
program implementing
VMM as nested ‘for’ loops

Custom VMM instructions
exposed to C via compiler
intrinsics

1.6x better performance
than writing Assembly

x

x

Manuscript under preparation
vv8dn@virginia.edu 12

Planned AI extensions – Activation AFU

Hardware support for activation functions

• ReLU

• Sigmoid

• Tanh

• Swish

vv8dn@virginia.edu 13

Planned AI extensions – Systolic AFU

• Load weights into the systolic array

• Store output activations – from systolic array to processor
registers/scratchpad

• Prepare input activations – pre-processing instructions

• Systolic MAC

• Flush weights / stop

vv8dn@virginia.edu 14

2-step Compiler & Issues
Solved by hardware designers

vv8dn@virginia.edu 15

Hardware/Software Co-design

✓End-to-end design methodology
• TVM on the frontend

• Synopsys ASIP Designer on the backend

✓Support for multiple Domain Specific
Language (DSL) frontends - Pytorch,
MXNet, TFLite, Tensorflow, DarkNet etc.

✓Verified with both 32 and 64-bit RISC-V

✓Quantization support

vv8dn@virginia.edu 16

ASIP Designer Enhancements

vv8dn@virginia.edu 17

Compilers are hard!

➢ 2-step compilation – TVM + ASIP Designer generated C compiler

➢ Goal is to have no/minimum interaction with TVM generated C code

• Problem 1 – ASIP Compiler is not smart
enough to detect opportunities for
complex instructions like VMM, GEMM etc.

• Works well for simple instructions like
MAC.

• Solution - Expose new instructions to TVM
via compiler intrinsics.

vv8dn@virginia.edu 18

Compiler issues with custom instructions

• Problem 2 – Breaking the convolution schedule leads to accuracy
issues.

• Issue 1 – Wrong allocation of operands
• Solved by TVM buffer and strided access of operands from bigger matrix

• Issue 2 – Wrong data type in quantized NN
• Defined input/output data types in TVM hardware intrinsic call

• 8-bit inputs and 16/32-bit accumulated result.

• Issue 3 – Kernel and Input data layout
• TVM supports only a few Input/Filter layouts with specific ISA.

• Adding support for required Input-Filter layout combinations in TVM for C
hardware target used in AI-RISC.

vv8dn@virginia.edu 19

More Compiler issues

• Problem 3 – TVM support for breaking the convolution computation
to match custom extension kernel size is limited.
• TVM throws random errors when breaking the computation schedule using

“tensorize” schedule pass.

• Exact same convolution works with tensorize as a standalone kernel but not
as a part of neural network.

• Solution – Trying to debug the exact issue but till we find a reliable
solution we work with what we have.
• Breaking the computation schedule into error-free parts and adapting the

custom instructions accordingly for testing purposes.

vv8dn@virginia.edu 20

TVM generated C code

vv8dn@virginia.edu 21

Without Custom instructions

With Custom instructions

Chess compiler intrinsic

vv8dn@virginia.edu 22

Chess_view rule

vv8dn@virginia.edu 23

Instruction definition nML

vv8dn@virginia.edu 24

Compiled assembly with new instructions

vv8dn@virginia.edu 25

Emulation/Definition of AFU

vv8dn@virginia.edu 26

Instructions through instruction viewer

vv8dn@virginia.edu 27

Results
Performance improvements with AI-RISC

vv8dn@virginia.edu 28

Evaluation Methodology

• Benchmark
• ResNet-8 from TinyMLPerf

• GEMV kernel

• Baseline
• 5-stage in-order 64-bit RISC-V RV64IMC

• Compilation
• TVM (TFLite to C) + Custom C compiler (C to binary)

• Simulation Framework
• Cycle-accurate Simulator

vv8dn@virginia.edu 29

Speedup on GEMV kernel

• A Matrix → 8x8
• B Vector → 1x8
• Input datatype → int8
• Output datatype → int16

vv8dn@virginia.edu 30

Speedup on single CONV2D kernel

• Input image → 7x7
• Input channels → 8
• Filter → 2x2
• Output channels → 2
• Input datatype → int8
• Output datatype → int16
• data_layout→ NHWC
• kernel_layout→ HWIO

vv8dn@virginia.edu 31

Speedup on ResNet-8 network from TinyMLPerf

vv8dn@virginia.edu 32

Design-Space Exploration for PIM VMM

vv8dn@virginia.edu 33

Area Overhead

vv8dn@virginia.edu 34

FoM for optimal PIM size

Figure of Merit = Performance gain / Area Overhead

vv8dn@virginia.edu 35

Vector “V” extension addition to AI-RISC

• Undergrad project by Nate Hunter, Noah Mills, Greg Vavoso and Bill Yang.

• Subset of Vector extension instructions added to AI-RISC:
• Addition and Subtraction

• Logical AND/OR/XOR/MIN/MAX

• Shift and Move

• Multiplication

vv8dn@virginia.edu 36

Summary

AI-RISC = Custom RISC-V processor for Edge AI

Tightly integrated AI Functional Units (AFU)

Custom ISA extensions to RISC-V

Complete SDK generation including compiler support for PyTorch, TensorFlow etc.

Speedup compared to RV64IMC → 17.6x for GEMV, 4.4x for ResNet-8

Scalable, flexible and support for both AI and non-AI applications

vv8dn@virginia.edu 37

Publications

• V. Verma, M. Stan, “AI-RISC - Custom Extensions to RISC-V for Energy-efficient AI Inference at
the Edge of IoT,” RISC-V Summit co-located with Design Automation Conference (RISC-V),
San Francisco, CA, December 2021.

• V. Verma, T. Tracy, M. Stan, “EXTREM-EDGE - EXtensions To RISC-V for Energy-efficient ML
inference at the EDGE of IoT,” The 12th International Green and Sustainable Computing
Conference (IGSC), October 2021.

• V. Verma, M. Stan, “AI-RISC: Extending RISC-V with tightly integrated accelerators and custom
instructions for AI inference at the Edge of IoT,” IBM IEEE CAS/EDS - AI Compute Symposium
(AICS),October 2021.

• V. Verma, M. Stan, “AI-RISC: Scalable open source processor for AI applications at edge of
IoT,” Design Automation Conference Young Student Fellow Program poster session (DAC
YFP), July 2020. (Best Poster Award)

vv8dn@virginia.edu 38

Questions?

• This work is funded by SRC under GRC AIHW task 2945.001.

vv8dn@virginia.edu 39

