

ASIP University Day 2021

Application-Specific Processors (ASIPs) in System-on-Chip Design: Market, ASIP Designer Introduction & University Program

Patrick Verbist, Product Marketing Manager, ASIP Tools Falco Munsche, Technical Marketing Manager, ASIP Tools November 17, 2021

Market Trends

Towards Programmable Heterogeneous Multicore Architectures

A Data Centric World, Enabled by Architectural Innovation

Market Dynamics: Reshaping Automotive SoCs

Yesterday Distributed Architecture

30- 100+ ECUs in a car Mainstream MCUs

Today Domain Logical Architecture

Consolidating of ECUs Integration of Functions, AI & ICs

Domain Architecture Implications

It's All About Data Processing, In Time, Within Power Budget

- Number/type of sensors increase data traffic
 - >15G data rate²
 - Waymo uses 29 cameras¹
- Number of sensors increase compute processing
 - Computing required > 1000 TOPs^2
- Increased need for packet processing in Gateway
- Increased need for Security

¹Source: YooJung Ahn, Head of Design at Waymo, March, 2020 ²Source: <u>Yole Development</u>, March, 2020

' synopsys°

Automotive SoC Architectures

Heterogonous Multicore Systems, with Processors Tailored to Specific Workload

- Security & SoC Safety Manager •
- Sensor Fusion •
- 16/14-nm $\rightarrow 8/7$ -nm $\rightarrow 5$ -nm
- Functional Safety

- Security & SoC Safety Manager
- 5G GPS Sensor Fusion
- 28-nm → 16-/14-nm
- Functional Safety

© 2021 Synopsys, Inc. 6

SoC Safety Manager

• 28-nm → 16-/14-nm

Functional Safety

SYNOPSYS[®]

Significant Data (Pre) Processing at the Edge (Sensor)

Edge Example: RADAR

Heterogeneous Multicore Design at the Edge

Domain Controller Example: Xavier (nvidia)

Xavier – A Heterogeneous Multicore Architecture

ACCELERATOR (PVA)

Optimized for imaging &

Cortex-R5 for config and control

2x DMA for data movement to/from

Source: nvidia

SYNOPSYS[®]

Inside PVA - Multicore System By Itself

PVA Vector Processing Unit (VPU)

7 Slot VLIW architecture

2 scalar + 2 vector + 3 memory instructions

Each vector unit has 32 x 8-bit, 16 x 16-bit, or 8 x 32bit vector math operations

Additional guard bits for extended precision math

Table lookup, histogram, vector-addressed store

Hardware loops and multi-dimensional address generator

I-cache and local data memory

PROGRAMMABLE VISION ACCELERATOR (PVA)

2x PVA

Optimized for imaging & vision algorithms

Each PVA

02018 NVIDIA CORPORATIO

Cortex-R5 for config and control

2x Vector Processing Units 2x DMA for data movement to/from internal/external memories

Tailored to the applicationspecific needs

- Data types
- Operations
- Memory access

©2018 NVIDIA CORPORATION

SYNOPSYS[®]

Source: nvidia (Hotchips, 2018)

Synopsys Confidential Information

What to Gain from Processor Cores Tailored to Specific Workloads

Processor Cores Tailored to Specific Workloads

Source: nvidia (Hotchips, 2018)

Gain achieved by balancing the workload to the best-suited engine

XAVIER : AUTOPILOT USE CASE

Example of an Autonomous Machine Mapping on Xavier

Market Dynamics: Zonal Architecture Reshaping Automotive SoCs

Yesterday Distributed Architecture

30- 100+ ECUs in a car Mainstream MCUs Today Domain Logical Architecture

Consolidating of ECUs Integration of Functions, AI & ICs

Tomorrow/Future Zonal Physical Architecture

Multi-Applications Central Processing <u>Multi-Chip</u> & Higher Complexity/Performance

The Race Continues

Processing More Data Within the Power Budget

https://www.eenewsautomotive.com/news/nvidia-announces-new-superprocessor-autonomous-cars

Chip Design for a Data-Centric World

- An explosion of data, triggering questions
 - Where to process the data
 - Which are the best processors and memories for different kind of data
 - How to structure, partition and prioritize the movement of raw and processed data
- "Golden Age" for architecture design
 - System architecture: Edge processing vs. centralized processing
 - Device architecture: 3D packaging, chiplets
 - SoC architecture: heterogenous multicore, layered memories, interconnects,
- SoC decisions
 - Make it programmable whenever possible, to allow for flexibility on the payload, and fixes / bypasses after tapeout
 - Select the processor(s) that fit the applications
 - Ensure efficient data exchange and synchronization between various cores
 - Define the right memory architecture, as it determines performance and power efficiency

Introduction to ASIP Designer

ASIP – Combining Efficiency and Flexibility

Application-specific instruction set processor

From Wikipedia, the free encyclopedia

An application-specific instruction set processor (ASIP) is a component used in system-on-a-chip design. The instruction set of an ASIP is tailored to benefit a specific application. This specialization of the core provides a tradeoff between the flexibility of a general purpose CPU and the performance of an ASIC.

Application-Specific Instruction-set Processors

ASIP Benefits: the 3 P's

Maximize performance	 Architectural specialization Parallelism: instruction-level, data-level, task-level
Minimize power consumption	 Architectural specialization Parallelism: instruction-level, data-level, task-level Power-optimised RTL generation Power-gating of cores
Programma- bility	 Support changing requirements without SoC re-spin Quick algorithm mapping from C to silicon, with easy debugging

• ASIPs bridge the gap between microprocessor cores and hardware

"ASIP Designer": not licensable IP, but an EDA tool

→ Enables specialization and innovation per customer, per product

ASIP Designer

Tool Flow

Supported design steps

- Modeling of instruction-set architectures: nML language
- Automatic generation of software development kit, including an efficient C compiler
- Algorithm-driven architectural exploration:
 "Compiler-in-the-Loop"
- Automatic generation of synthesizable RTL
 "Synthesis-in-the-Loop"
- Design verification

Processor Design is Multi-Disciplinary

Top-Down Approach

Applications Team Rough algorithmic spec Architecture Team Architecture spec Mardware Team SW Tools Team RTL coding & Assembler, simulator synthesis (compiler?) Marchitecture Team Assembler, simulator (compiler?) Marchitecture Team Real application code

- Largely a top-down process, with too-little / too-late feedback
- Limited multi-disciplinary skills in teams
- Inconsistent RTL & SW tools, due to misinterpretation of architecture spec
- Suboptimal performance for the eventual applications*
- Too long design cycle, missed business opportunities

Agile Approach

- Tool automation, spanning all design disciplines
- All design views automatically derived from single "golden model" that is continuously refined
- · Tool helps designers to develop inter-disciplinary skills quickly
- Early SW development speeds up project and improves architecture
- Small design team can master sophisticated designs
- Consistency guaranteed by methodology, eases verification
- · Short design cycles, easy creation of design variants

Synopsys®

ASIP Designer

Broad Architectural Scope

nML and ASIP Designer...

- Support a wide range of ASIP architectures, beyond configurable templates
- Enable true architectural exploration

SYNOPSYS[®]

FLEXIBILITY

ASIP Designer – Some Case Studies

Full Architectural Freedom, Not Based on a Template

Vector-DSP

- Combined SIMD / VLIW design
- Broad data type support: Int 4/8/16/32 Float, Bfloat 16, fixedpoint, complex
- Fully C-programmable

Program memory	Instruction Fetch & Decode Unit	Load/Store Address Gen Units
32b Scalar RISC Unit	Fixed Point 512b SIMD Vector Unit	Floating Point 512b SIMD Vector Unit
Scalar Register Files	Vector Register Files	

FFT / DFT Accelerator

- FFT: all power-of-2 sizes from 8 to 2048, algorithm up to radix-8
- DFT: all primefactorizable sizes from 6 to 1536
- 8-lane SIMD, 5-way
 VLIW

RISC-V Derivative

- Standard RISC-V ISA
- Extended with specialized instructions for keyword spotting
- 10x acceleration, 1.16x area increase
- Packed SIMD, 8-bit data type support

AI Accelerator

RISC-V scalar unit, dedicated vector processing and address generation units

SYNOPSYS®

ASIP Designer

Example Models

Name	Description Many examples provi		
Microcontrollers		Many examples provided	
Tnano	16-bit microcontroller, lightweight and configurable	Microcontrollers	
Tmicro	16-bit microcontroller, fully featured		
DLX (family)	Variants of 32-bit microcontroller	• 0355	
Tmcu	32-bit microcontroller	SIMD	
Trv32 (family)	32-bit microcontroller featuring RISC-V ISA, 3 or 5 pipeline stages (incl SDX option for S imple D atapath e X tensions)	• VLIW	
Trv64 (family)	64-bit microcontroller featuring RISC-V ISA, 3 or 5 pipeline stages	Multi-threading	
PD_Triop	32-bit microcontroller with 64-bit address spaces	* Multi-tilleading	
DSPs and generic pa	arallel processors	Domain specific	
Tdsp	16/32-bit DSP		
Tvec (family)	Variants of SIMD processor	Examples are good starting	
Tvliw (family)	Variants of VLIW processor	points	
Domain-specific proc	cessors		
Tmoby	Accelerator for AI application, featuring MobileNet V3 graph	Get a jump start with known	
Tvox	Accelerator for SLAM (simultaneous localization and mapping)	working example	
MMSE	Minimum Mean Square Error Equalization	I earn about modelling	
Tgauss	Vectorization and memory management for image processing	concents	
Tmotion	Accelerator of motion estimation kernel	concepts	
Tcom8	SIMD processor optimized for some communication kernels	 Provided in nML source 	
FFTcore	Scalar implementation of complex FFT	code, users can modify for	
Mxcore	Matrix processing ASIP for communication kernels	application-specific tuning	
Primecore	SIMD implementation of prime-factor algorithm for FFT & DFT		
JEMA, JEMB	Dual ASIP for JPEG encoding (accelerating DCT, VLC)		

Retargetable Compiler

Language Front End

Retargetable Back End

SYNOPSYS[®]

ASIP Designer SDK

Compiler Back End and Parallel DSP Architectures

- Target architectures
 - ILP with multiple slots
 - E.g. 5 slots, typically heterogeneous
 - Wide SIMD
- Compiler optimizations
 - VLIW Scheduling including software pipelining for inner and higher-level loops

- Aggressive scheduling

 Register allocation for distributed register files

– Typically, ~10 stages, with 5 stages for the execute pipe

-Central or distributed register file(s)

- Limited capacity

– Deep pipeline

ASIP Designer

Production Ready RTL Generation

- Converts nML processor model into synthesizable Verilog or VHDL
- Generated RTL code is netlist of modules: functional units, register files, muxes, controller, ...
- Low power features
 - Operand isolation
 - Clock gating
- Automatic synthesis script generation
- Use real synthesis and P&R data to measure gate count, timing closure

Integrated Debugging Flow

ChessDE's Graphical Debugger Perspective

🔽 motion_opt.prx - ChessDE		– 🗆 X
ile Edit View Project Compile Debug Settings Wind	ow Help	_
	ontrols a white a definition of the second	Micro-sten
	tmotion_init.s motion_opt.c	load_store.n mult.n shift.n alu.n
• 17 3095 mvib r5,9	<pre>int_bast v = 0;</pre>	R[t] = rtel = alut; ^
- 18 3000 mvib nb 0	int best $y = 0$;	
20 3003 mwib r3 0	for (int i = 0; i < 9; i+1) i	syntax : op " r"t ",r"r ",r"s
• 21 3006 mvib r6.0	<pre>int x = x steps[i] >> j;</pre>	Image : op::::::s;
1 • 22 0104 add r4.r0.r4	<pre>int y = y steps[i] >> j;</pre>	1
D • 23 001c add r0,r3,r4	 sad = sad 16x16(search with the sad = sad 16x16(search with the sad search with the same search withe same search with the same	opn select rrr(t: c3u, r: c3u, s:
F 24 7ec0 st r0, dm(sp-20)	 if (sad < min_sad) 	₽{
25 7ea6 st r6,dm(sp-22)	- -	action {
26 7ee3 st r3,dm(sp-18)	min_sad = sad;	stage E1:
 27 3304 mvib r4,48 	best_x = x;	<pre>alur = rrel = R[r];</pre>
 28 2edd 003f do r5,63 	best_y = y;	<pre>alus = rsel = R[s];</pre>
• 30 6f63 ld r3,dm(sp-10)	- }	 alut = select(CND, alur, al
 31 4095 1d r5, dm(r2++) 	- }	 R[t] = rtel = alut;
32 7e82 st r2, dm(sp-24)		- }
• 33 10ae asr r2,r5,r6	• PRINTF ("Best sub vector for a	syntax : "sel r"t ",r"r ",r"s
	. Source code	Micro-stepping in
36 0002 add r0 r0 r2	dy to best y:	which o-stepping in
• 37 0006 add r0.r0.r6	-}	nMI processor model
• 38 c181 ld vl.cm(r3++)		
 39 c060 1d v0, dm(r0+=r4) 		
40 7e62 st r2,dm(sp-26)	Profiling Hosted I/O □ 🛛	Waveform 🛛 🗅 🏻
41 7e46 st r6,dm(sp-28)	Start motion estimation	
	, Start motion estimation.	time 4d
۲ ×		R0 a50
n de la Dinalina		
tatistics Registers Pipeline		R1 7fff
69 70 71 72 73 74 75 76 77 78		R2 722 Waveforms
15 ID E1 15 mvi r2,1826		
17 ID E1 17 mulh 50	Locals / backtrace	100
	Backtrace: motion estimation void motion estimation	P uchar PCMb uchar PMotion vector (22) V
18 ID E1 18 mvib lr,0	Name	Value Leasting
19 ID E1 19 mvib ph,0	Name Type	Value Location
20 ID F1 20 mvib r3 0	L⊳search_window unsigned char DMb**	DMb[2640] DMb[36] ▲ ▼
	->v struct Motion_vector	DMb** DMb[2] DMb[38] ▲ ▼
21 ID E1 21 mvib r6,0	Variables CMb**	CMb[0] DMb[40] ▲ ▼
22 ID E1 22 add r4,r0,r4	-ay toritorioo	0 DMb[34] 🔺 🔻 🗸
	<	>
4 Instruction puppling	Console	E
Instruction pipeline	console	
⁴⁴ Instruction pipeline ⁴		
²³ Instruction pipeline ⁴ 69 70 71 72 73 74 75 76 77 78		
Instruction pipeline ⁴ 69 70 71 72 73 74 75 76 77 78 >	<	

Integrated Debugging Flow

On-Chip Debug (OCD) Hardware

Graphical Debugger	Debug Flow	No. Cores
ChessDE	ISS, OCD (single-core)	Single
ChessMP	ISS, OCD (multi-core)	Multi
Eclipse	ISS, OCD	Single
Virtualizer	Virtual prototyping (SystemC)	Multi
Verdi	ISS (tracing info from RTL)	Single

- Jtalk server
 - Built-in drivers for 11 industry OCD probes
 - Dynamic linking with customer-defined OCD probe driver
- ASIP Designer generates RTL of:
 - ASIP, PDC (processor debug controller), JTAG, APB bus

Synopsys°

HAPS 70/8

Overview

Integer models

- Supported ISA: RV64IM, RV32IM
 - Integer instructions
 - Multiply instructions
- Micro architecture
 - Protected pipeline with 3 or 5 stages
 - Hardware multiplier
 - Iterative divider
- Optional extensions: Trv<mm>p<n>x
 - Compressed instructions
 - Zero overhead hardware loops
 - Load/stores with post-modify address modes

Floating point models

Supported ISA: RV64IMF, RV32IMF

- Integer instructions
- Multiply instructions
- Float (single precision) instructions
- Micro architecture
 - DesignWare based implementation FPUs
 - Iterative divider and sqrt units
- Optional extensions: Trv<mm>p<n>fx
 - Zero overhead hardware loops
 - Load/stores with post-modify address modes

SDX

- Simple Data Path Extension Mechanism
 - FFT
 - SHA256
 - CNN

Tmoby

SIMD/VLIW MobileNet accelerator

Future work

- Model improvements
- Privileged Architecture
- RISC-V Vector ISA

	32-bit datapath	64-bit datapath	modes	32-bit datapath
3-stage	Trv32p3	Trv64p3	3-stage pipeline	Trv32p3f
pipeline	Trv32p3	Trv64p3		Trv32p3fx
5-stage	Trv32p5	Trv64p5	5-stage pipeline	Trv32p5f
pipeline	Trv32p5x	Trv64p5×		Trv32p5fx

Synopsys°

Integer Variants

Context

 Optimized processor models of RISC-V ISA

 Intended as starting point for ISA extension (ASIP design)

- Supported ISA: RV64IM, RV32IM
 - Integer instructions
 - Multiply instructions
- Optional extensions: Trv<mm>p<n>x
 - Compressed instructions
 - Zero overhead hardware loops
 - Load/stores with post-modify address modes

	32-bit datapath	64-bit datapath
3-stage	Trv32p3	Trv64p3
pipeline	Trv32p3×	Trv64p3×
5-stage	Trv32p5	Trv64p5
pipeline	Trv32p5×	Trv64p5×

- Micro architecture features
 - Five stage pipeline: IF, ID, EX, ME, WB
 - Three stage pipeline: IF, ID, EX
 - Protected pipeline
 - Register bypasses when possible
 - Stall (bubble) when bypass not possible
 - Hardware multiplier (64x64→64 bit, 32x32→32bit)
 - Iterative divider

SDX: Simple Datapath eXtensions

- SDX is a mechanism to add simple extension instructions to Trv (RISC-V)
 - nML model of Trv32p3 with predefined stubs for extension instructions
 - User codes the **behavior** of the stubs in PDG (bit-accurate C code)
 - Compiler intrinsics that target the extension instructions are provided (and can be modified)
- Benefits
 - No (deep) nML knowledge required: extensions can be created by SW engineers
 - Fast exploration of extensions with compiler-in-the-loop & synthesisin-the-loop
- Extension encoded in RISC-V custom-2 space
- Operand options
 - 3-register (32 and 64-bit)
 - Accumulate
 - Additional single register inputs and outputs, ...

SDX Examples Provided With ASIP Designer

FFT

SDX instructions accelerating

- Complex fixed-point multiplication & scaling *sdx1* rd, rs1, rs2
- ABS(x) function: *sdx2 rd*, *rs1*, *rs2*(*x0*)
- FFT Butterfly: *sdx5* rd,rs1,rs1

Specialization:

- Fractional data types
- Complex numbers (16bit/16bit -> 32bit register)

Speedup: 280%

Area increase: 31%

SHA256

Computes a hash of message W using bitwise AND, OR, XOR operations, shift operations and additions

Custom data path is ideal to implement the complex hash function in one instruction

Additional state of the hash functions (8 state variables) require an SDX variant that supports 8 additional register reads and writes

sdx7 rd, rs1, rs2, x24,x25,..., x32

Speedup: 270% Area increase: 16%

Keyword Spotting

Based on small sized Neural Network (3.3M MACs)

SDX architecture feature: packed SIMD

32-bit register contains vector of 4x 8-bit values

Use of register pairs, enabling 64-bit access

sdx4a_dr dd,rs1,rs2,mode // vmac
sdx0_dd rd, ds1,ds2 // vqsat

Speedup: 1160%

Area increase: 16%

Synopsys®

Tmoby: Accelerator Tuned for MobileNet v3 Execution with Medium Throughput

Memories

- VM: features

- WM: weights

Vector addressing

Context

- Growing interest in ASIPs for AI applications
- Customer requests to provide educational models, demonstrating how ASIPs can accelerate AI functions

Architecture

- 4-way ILP
- Trv32p3-based
- scalar datapath
- Vector datapath
 - SIMD64
 - MAC 8x8→32

Application

- Main function
 - Implementation of
 - neural-network graph
 - Memory copies
 - Kernels

- Kernels
 - CONV_2D (pointwise)
 - DEPTHWISE_CONV_2D
 - ADD
 - AVERAGE_POOL_2D
 - SOFTMAX

Functionality 2020.09

- Tmoby: educational example model
- Application: MobileNet V3
 - Based on TensorFlow code
 - Converted to C code with Tmoby-specific vector intrinsics
- Starting from RISC-V ISA
- 360x cycle cnt. decrease

Synopsys[®]

RVV Proof of Concept Models

- Goal: demonstrate and document to potential users how RISC-V Vector instructions can be modelled in ASIP Designer
 - Modelling of basic RVV concepts
 - Opcode polymorphism (residual control based on SEW register)
 - Register grouping (residual control based on LMUL register)
 - Whole vector instructions for moves and spilling (needed for C code compilation)
 - Dynamic multi-issue model
 - How can dynamic multi-issuing be modeled in ASIP Designer
 - Pure ASIP VLIW style model
 - Support RVV C API using static instruction level parallelism
- Notice: these models are not feature complete nor RTL-optimized
 - Only a few instructions are supported: vsetvli, vadd, vle, vse, vmv, vmvNr, vlNr, vsNr
 - Shallow FDE pipeline with one execute stage

- Problem statement
 - RVV code is a mix of scalar and vector opcodes. When executed in a scalar way the vector units are used in an inefficient way

sax	ру :
	vsetvli a4, a0, e32, m8
	vlw.v v0, (al)
	sub a0, a0, a4
	slli a4, a4, 2
	add a1, a1, a4
	vlw.v v8, (a2)
	vfmacc.vf v8, fa0, v0
	vsw.v v8, (a2)
	add a2, a2, a4
	bnez a0, saxpy

- Only 4 out of 10 instructions are vector instructions

RVV Dynamic multi-issue versus VLIW

ASIP Designer allows you to explore both options and their variants

- Option 1: dynamic multi-issue
 - Three-way multi-issue model

Scalar	Vector	Vector	
opcodes	compute	load/store	

- Issue logic converts scalar code into parallel code
- Proof of concept model also implements register grouping using <u>serial execution</u> and <u>chaining</u>

```
- Example, assuming LMUL = 4
vadd v8,v0,v4
vst v8,(a0)
scalar 1 | vadd v8, v0,v4
scalar 2 | vadd v9, v1,v5 | vst v8,(a0)
```

• RVV binary compatible model

- Option 2: ASIP VLIW Architecture (static multi-issue)
 - Support the RISC-V Vector C API by hosting the RISC-V vector instructions in a VLIW structure
- More architecture freedom
 - Three slot VLIW
 - Zero overhead loops
 - Post increment addressing modes
 - Dual width vector loads
 - Register grouping: wide vectors are converted to short vectors in the compiler front end
- Better leverages ASIP Designer's capabilities
 - Complex dynamic issue logic is replaced by straightforward issue logic
 - Leverage powerful and unique compiler technology to optimize code at compile time
- C code compatibility model (support the RVV C API)

NSITEXE Develops Multiple RISC-V Based Custom Processors for Automotive Applications in Half the Time with Synopsys ASIP Designer

Rapid Architectural Exploration and Automatic Generation of SDKs Accelerates Design Time

NSITEXE Successfully Develops Multiple Custom Processors for Automotive Applications in Half the Time with Synopsys ASIP Designer Tool

ASIP Designer Tool Provides Rapid Architectural Exploration and Automatic Generation of Software Development Kits to Accelerate Design Time

MOUNTAIN VIEW, Calif., Sept. 16, 2020 /PRNewswire/ --

- NSITEXE used ASIP Designer to develop five specialized custom processors for compute-intensive signal processing functions
- · Automatic generation of software development kit enabled NSITEXE to complete the design with
- " "Synopsys' ASIP Designer Tool provided us with ready-to-use processor
- ^{• R} examples that could be extended to implement our custom ISA, allowing us

to rapidly develop our custom vector extensions that satisfied our
 Synops
 functionality and performance requirements. ASIP Designer enabled us to
 develop the data flow processor model in record time and deliver it to the
 Design
 customer on schedule."

proces

NSI-TEXE

Sadahiro Kimura, Manager, Semiconductor IP R&D Unit, Advanced Technology Development Section at NSITEXE, Inc.

- NSITEXE used ASIP Designer to develop five specialized custom processors for compute-intensive signal processing functions
- Automatic generation of software development kit enabled NSITEXE to complete the design with limited resources and on a tight schedule
- Rapid setup of a virtual prototype of NSITEXE's multicore DFP enabled by the ASIP Designer's ability to export the processor's simulation model with SystemC interfaces

Synopsys' ASIP Tools

Broadest Market Adoption – Industry Proven

Widespread Deployment Across A Wide Range Of Applications

- Estimate more than 300 unique SoC products with ASIPs in the market today
- Shown are publicly announced customers only

Synopsys University Program

Synopsys University Program – Europe Region Managed by Europractice

• Since Jan' 2019: ASIP Designer available free-of-charge on top of Synopsys FEV package

Synopsys Tool Portfolio

Front End and Verification Suite (FEV)

The Front End and Verification suite includes a wide range of tools for verification and synthesis of digital designs for ASICs & FPGAs targets. The FEV suite includes RTL ASIC Synthesis (Verilog, SystemVerilog and VHDL), FPGA Synthesis and Multi-FPGA partitioning, test insertion and ATPG, logic simulation (VHDL, Verilog, SystemC, SystemVerilog, and SVA), logical equivalence checking, signoff timing analysis (with signal integrity), signoff power analysis, multi-voltage simulation, multi-voltage structural checking, and fast spice simulation. <u>Full details of the FEV suite...</u>

ASIP Desginer

ASIP Designer is tool suite for creation of Application-specific instruction-set processors (ASIPs) for applications benefitting from highly specialized processing elements that are programmable in C. Application-specific instruction-set processors (ASIPs) typically deliver greater computational efficiencies than general purpose processors and more flexibility than fixed-function RTL designs. ASIP Designer is available to users of the Front End and Verification (FEV) Suite as a zero cost add-on. <u>Full details of ASIP</u> <u>Designer...</u>

ASIC Implementation Suite (IMP)

- On request only: approval required, additional document to be signed

Synopsys University Program

Other regions

- The Americas
 - ASIP Designer available free-of-charge on top of Synopsys University Package
 - On request only: approval required, additional document to be signed

3. Licensed Products	6			
Product Name Pro	oduct Code	License Quantity]	
ASIP Designer A4	34-0			
				I acknowledge that approval of this request to participate in the ASIP Designer University Program is at Synopsys'
4. Status/Activities I	nformation			sole discretion. Any use of ASIP Designer licenses will be also governed by the Synopsys End User License
Please describe your academic nature and adhere to the term	c use of the Synopsy ns and conditions of	/s Licensed Product (ASIP De the End User license agree	esigner). Note: Use must be non-commercial in ment signed with Synopsys	Agreement.
Complete all relevant fields an	nd provide full detai	ls. expanding the sections a	s necessary	Leave the two states in the 100 Decision during the Decision and a state of the Decision of the Decision of the
Course(s):	Duplicate and Step-	and-repeat the following se	ction for each course/module.	l agree that participation in the ASIP Designer University Program required me to
Course Name	1			 deliver an Annual Report to Synopsys, summarizing the activities performed and the achieved results
Instructor/Professor(s)				 refer to Synopsys in publications (if any) and inform Synopsys at time of submission and of acceptance
Course URL				participate in ASIP University Days where possible
Description				
				I request to participate in the ASIP Designer University Program.
Course Level	Undergraduat	te 🛛 Graduate Masters 🛛	🗆 Graduate PhD 🛛 Other:	
Synopsys tools planned to be	e used	ASIP Designer		Name: Organization Stamp
Number of students attendir	ng			
Research Project(s):	Duplicate and Step-	and-repeat the following se	ection for each research project.	Position:
Project Name	T			
Instructor/Professor(s)				Signature:
Project URL				
			Date:	
Description				
L				Once completed, please return this document to Patrick Verbist, Synopsys, at patrick.verbist@synopsys.com .

- Other regions
 - Please contact <u>patrick.verbist@synopsys.com</u>

Thank You

Event survey link: https://www.surveymonkey.com/r/ASIP-univ-day2021