An Application Specific
Vector Processor for CNN-based
Massive MIMO Positioning

MOHAMMAD ATTARI, JESUS RODRIGUEZ SANCHEZ, LIANG LIU,

AND STEFFEN MALKOWSKY

LUND UNIVERSITY, ASIP UNIVERSITY DAY, 2021
A

ALY

Cellular Wireless Networks

=
Lk

=

=
4
=

=
=

=
=
=

=
a4

2

%

*»Cells
**Base station (BS)
ss*User equipment (UE)
s Cellular network
*5G & beyond

“» Communication

“* Positioning

“*» Sensing

Traditional Time Division Multiple Access (TDMA)

» Only one antenna
» Time multiplexing

Traditional Frequency Division Multiple Access (FDMA)

»Frequency multiplexing

Massive MIMO Spatial Division Multiple Access (SDMA)

» Spatial multiplexing
» High spectral efficiency

Massive MIMO: System Perspective

B UEs (e.g. K=16)
A& BS antennas (e.g. M=128)

%% Wireless channel (H)

(bi1 b1z o0 by]
ba1 baa -0 banm
b1 bra o0 brm] KyM

User Positioning

e Find user’s location |§

e Methods

— Proximity based @

— Angle based A°—

— Range based % é
— Fingerprint based :ﬁﬁ)-l

Fingerprint-based Positioning

e Find terminals' position in the area
— Set of training samples (fingerprints)
— Known positions measurements
— Online measurements
e Drawbacks
— Computationally heavy
— Performance degradation in dynamic environments

® ¢ o o o o o
® ¢ o o o o o
® ¢ o o o o o
® ¢ o o o o o

/v
v 1
/7 oy
v Lo
b hi1 hio his |
hl ha1 hao ha. s
hl har hae o hags |

8 LUND

UNIVERSITY

Fingerprint-based Positioning: Training

e System setup

— Area: 10m x 10m

— BS 40m away (antennas=128, subcarriers=64)

— 441 locations, 50cm apart

— Channel data from the COST 2100 channel model (fingerprint)
— 2D FFT (from antenna-frequency to angular-delay domain)
— Sparse image and (x,y) fed to CNN (obtain weights)

3 i sparse image
| ' 40m —

|{ 10m =I‘ Yy » 25 50 75 1EIUU 125 150 175
| I‘ Angle [9
S - ==/ - -
weights
<
ZN

F

10m

fingerprint

(x,y) © known user position

Fingerprint-based Positioning: Inference

e System setup

e Online measurement
e FFT & CNN 1
— Input: 64x128x2

10m
— 4 CONV layers
— 3x3 kernels '
— 1 FC layer
64x128x16 %
64x128x2 32x64x16 %
16x32x16 \
8x16x16 .
e B B
/
-conv 3x3 convk3x3 | 16ccigvk3x3 I 16cc;gv|(3x3 I fully //
16x16 kernels X ernels X ernels
16x2 kernels max pool max pool max pool connectetlg
10 LUND

UNIVERSITY

Bird’s-eye View of the Processor

>
| -
(@]
-
(]
=
| -
O | addd
m]
(&)
n ‘

datal
>
| -
£
o -
= =
c Q
© =
© addr C
E addr S Emm— 8
-'J.,"E:>+ :wdatazgsc T
S inst rdata 256 >

11

Fetch & Decode

12

Fetch & Decode

Fetch Unit s
A

Decode

Issue

LUND

UNIVERSITY

Scalar Core

13

Register

LUND

UNIVERSITY

Vector Core

0

14

LUND

UNIVERSITY

Vector Core

ID EX1 EX?2 EX3 WB
ED_’ Vector maln. SIMD
Register POS -
From File _’ -' | -’ -’ : |
Vector Memory ul
Scalaqr Core J "
Registers Scalar
’} o8 Lal A Al

VA

VB

Scalar

compl

14

VACCU

(0] }—

conj

acCcumy—

LUND

UNIVERSITY

Parallel Memory

Memory
Interface

Address
Generator
N
 mmm—
Data
Shuffler

12

|

15

CNN Accelerator

CNN Accelerator

Convolution

Summation

Max Pooling

Fully Connected

16 LUND

UNIVERSITY

Accelerator

17

Previous Work: In-pipeline Systolic Array

NML + PDG

18

Systolic Array with 10 Interfaces

e Developed inside ASIP Designer
— No RTL integration needed

e ~300 lines of code
e Compiler-friendly intrinsics

io _interface systolic handler()

{

— reg systolic counter <uint5>;
hw_init systolic counter = 0;

reg systolic start <uintl>;

reg reg systolic row 0 <v16w32>;
reg reg systolic row 1 <v16w32>;
reg reg systolic row 2 <v16w32>;
| reg reg systolic row 3 <v1l6w32>;

A
if (systolic counter < 8)
{
reg systolic accum 00 = systolic mac(reg systolic row @[@], reg systolic col ©[@], reg systolic accum 80);
}
oo
if (systolic counter == 16)
{
vm_vaddr w0 = vAddr_r@ = systolic out address;
VM[vm_vaddr w@] = vm write® =
reg systolic accum 07::reg systolic accum 06::reg systolic accum 05::reg systolic accum 04::
reg systolic accum 03::reg systolic accum 02::reg systolic accum 0l::reg systolic accum @0;
}
/7.

19 LUND

UNIVERSITY

Convolution Engine

e \Vector memory (600 KB)
e Row buffer

e 1D primitive units (PU) BUk Row
— Activation row register puffer
— Filter row register ! |
— 17 processing engines (PE)

— Partial sum (psum) row register

L —
L
—_
—
—_—
—
—
—
—_—
—
_——
—_—

PU 1
s R s

activation row n

psum row n /
PU 2

T [T__J|psum row n+1/

| 1] [§i§5
PU 3
T T _|psum row n+2
ol e Yol PE 16
%% % % 1

IR output activation row n

filter row 1

psum row n

v/

to vec!or memory

21 Ld&D

UNIVERSITY

CNN Dataflow

Load
kernel values

Start
convolution

22

LUND

UNIVERSITY

CNN Configuration

Set up 1%t layer =

Set up 2" layer—

Set up 3™ layer =

Set up 4t layer

| |

Start the CNN
23

setup_cnn(

)i

setup cnn(

)

CNN_NUM FILTER CHANNELS 1ST LAYER,™
CNN_NUM CONVOLUTIONS 1ST LAYER,

CNN_NUM_TOTAL ROW SECTIONS 1ST LAYER,
CNN_NUM_ROW SECTIONS 2ND LAYER,
CNN_NUM_ROWS 2ND LAYER,
CNN_BUFFER END ADDR 2ND LAYER
LS
N

CNN_NUM_FILTER CHANNELS 2ND LAYER,
CNN_NUM_CONVOLUTIONS 2ND LAYER,
CNN_NUM_TOTAL ROW SECTIONS 2ND
CNN_NUM_ROW SECTIONS 3RD LAYER,
CNN_NUM_ROWS 3RD_LAYER,
CNN_BUFFER_END_ADDR 3RD LAYER

setup_cnn(

)i

CNN_NUM_FILTER CHANNELS 3RD LAYER,
CNN_NUM_CONVOLUTIONS 3RD LAYER,
CNN_NUM_TOTAL ROW SECTIONS 3RD
CNN_NUM_ROW SECTIONS 4TH LAYER,
CNN_NUM_ROWS 4TH_LAYER,

CNN_BUFFER _END ADDR 4TH LAYER

setup_cnn(

)

CNN_NUM_FILTER CHANNELS 4TH LAYER,
CNN_NUM_CONVOLUTIONS 4TH LAYER,
CNN_NUM_TOTAL ROW SECTIONS 4TH
CNN_NUM_ROW SECTIONS 1ST LAYER,
CNN_NUM_ROWS_1ST LAYER,

CNN_BUFFER_END_ADDR 15T LAYER

start_cnn();

LAYER,

_LAYER,

 LAYER,

#define

#define
#define
#define
#define
#define

N #define

#define

N #define
N #define
N\ #define

N #define

N\ #define
s

CNN_NUM VECTOR_ELEMENTS 16

CNN_NUM_ ROWS 1ST

CNN_NUM_ROWS_2ND_
CNN_NUM_ROWS_3RD_

CNN_NUM ROWS 4TH

CNN_NUM_COLS_1ST |
CNN_NUM_COLS 2ND |

CNN_NUM_COLS_3RD_
CNN_NUM COLS 4TH_

LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER
LAYER

CNN_NUM _ROW SECTIONS 1ST LAYER (CNN NUM COLS 1ST LAYER / CNN_NUM VECTOR ELEMENTS)
CNN_NUM_ROW SECTIONS 2ND LAYER (CNN NUM COLS 2ND LAYER / CNN NUM VECTOR ELEMENTS)
CNN_NUM _ROW SECTIONS 3RD LAYER (CNN NUM COLS 3RD LAYER / CNN NUM VECTOR ELEMENTS)
CNN_NUM_ROW SECTIONS 4TH LAYER (CNN NUM COLS 4TH LAYER / CNN NUM VECTOR ELEMENTS)

LUND

UNIVERSITY

Results and Conclusion

CNN-based positioning hardware for Massive MIMO
Developed with ASIP Designer from Synopsys
Synthesized in 22nm technology node

Cell area of around 1.1 mm?

Power consumption of 55 mW (not including external
DRAM)

2.5M cycles to perform one localization

e 3.1 milliseconds (with an 800 MHz clock)

e 320 user positions per second

24

Table 1: Cell area breakdown

Module Cell Area® Utilization
Vector memory 782,766 70%
Program Memory 60,980 5%
Scalar Data Memory 23,069 2%
Systolic Array 94,279 8%
CNN Engine 73,529 6%
ASIP 92,126 8%
Total 1,126,749 100%

* in square micrometers

LUND

UNIVERSITY

[LUND

UNIVERSITY

