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Introduction

* DNN has become important in many application domains like image
classification, speech recognition, natural language processing, etc.

* Diverse types of DNN models are proposed to solve different tasks
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DNN Workload Analysis

 Different DNN models have different percentages of MAC and
non-MAC operations

* Non-MAC operations are critical in overall performance, and
computation patterns differ significantly in different DNN types
e LSTM: Sigmoid/Tanh, vector operations
e Attention: Softmax
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Limitations in Prior Works

* DNNs are changing rapidly, but accelerators are
customized for a small range of models
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Supporting Wide Range of DNNs

* How to make DNN accelerator desigh more programmable
(or flexible)?

* What is the cost (e.g., hardware area/energy) of supporting
more DNN models in a design?




Accelerator Design Choices (1)

DNN
Accelerators

* Fixed-Datapath
* Controlled by a set of configuration registers

with a host CPU
| Fixed-Datapath | Programmable

* Higher customization but lower flexibility
* Examples: NVDLA, SIMBA, FlexASR, etc.
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Accelerator Design Choices (2)

* Programmable Datapath
* General-purpose CPU with customized hardware units
* Fine-grained controller/instruction set
 Examples: Cambricon, etc.

* Weakness in Cambricon
* Overhead on scheduling of multicycle instructions

DNN
Accelerators

leed-Datapath | Programmable |

Proposed FlexACC: programmable
datapath with fine-grained
"single cycle" instructions for
different software patterns

Liu, Shaoli, et al. "Cambricon: An instruction set architecture for neural networks." ISCA 2016.
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Key Contributions of This Work

* A comprehensive workload analysis is conducted on a diverse set of
DNN models (i.e., CNN, LSTM, Transformer, and GCN)

* We designh FlexACC with tightly coupled RISC-V and customized DNN
acceleration instructions to support different DNN workloads

* We quantitatively compare FlexACC with fixed-datapath baselines to
study the cost of programmability
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ASIP Designer: A Brief Overview

 Starting from a general-purpose RISC ISA template
* Extend it by adding new instructions and customized hardware units
e Codesign both hardware and compiler interface simultaneously

* Test/optimize hardware by running compiled C code on provided Instruction Set Simulator

void sort(int A[], int len)

for (int 1 =0 ; 1 < len-1; i++) {
int loc = find min location(A,i,len);
int temp = A[i];

Add new instructions ALL] =~ Allocl;

Al[loc] = temp;
MatVecMpy rd, rsi, rs2 } }
Sigmoid rd, rs1 e . — .. .- .. ..
ISS command = <PROCDIR>/../iss/tnlp ca dbg
------ ISS mode = Cycle accurate
o o . Core name = ::iss
» Define compiler interface » e o e
v8int_t = MatVecMpy(v8int_t, v64int8_t, v8int8_t) Tnstruction count = 1199
v8int_t = Sigmoid(v8int_t ) PC = 11
A A A AT SP = 2048
Stack area: DMb [ 512 .. 2048] growing down
" Minimum stack pointer value = 1960
RISC baseline hardware Codesign of hardware/compiler Simulate with compiled Ccode |



FlexACC Architecture (1)

* FlexACC architecture combines RISC-V pipeline and DNN acceleration units

* Program control unit (PCU) fetches instructions from program memory
(PM) to issue control signals

RISC-V DNN acceleration (SIMD, MAC Array)
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FlexACC Architecture (2)

 Scalar operations are performed on RISC-V pipeline with data
memory (DM), general purpose registers (X-Regs), and scalar ALU

RISC-V DNN acceleration (SIMD, MAC Array)

32-bit DM ]\ 8N-bit N-bank VMO 8N-bit N-bank VM1
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FlexACC Architecture (3)

* DNN acceleration datapath includes customized vector memories
(VMO, VM1) and different types of vector or matrix registers

* Note: vector size N is a configurable architectural parameter

RISC-V DNN acceleration (SIMD, MAC Array

32-bit DM/ 8N-bit N-bank VMO 8N-bit N-bank VM1
AddrQen| | AddrGen AddrGen
e e =
[ X-Regs (32b), Ctll N Act- Regs (N32b), Mat-Regs (N%8b), and Vec-Regs (N8
Scalar ALU SIMD ALU i SIMD PWL || N-Lane*N MAC Array
Ctrl (ADD, SUB, (Sigmoid, mac| Imac| [mac| | mac
MUL...) HE MAC | | MAC | | MAC| | MAC
64-bit PM PCU ._lcf Li.l |_|Ct Ll mac||mac| [mac||mac

(IF, ID) =I—CtT||MAc mAc| Imac| [mac




FlexACC Architecture (4)

* MAC Array computes matrix-vector multiply
with 8b multiplication and 32b addition

* Reuse of vector register via broadcasting

Matrix Reg 8b
(Transposed)  vector Reg 8b

RISC-V DNN acceleration (SIMD, MAC Array) MAC| IMAC| [MAC MAC
32-bit DM 8N-bit N-bank VMO i MAC] MAC] [MAC] [MAC
-bi -bit N-ban 8N-bit N-bank VM1 vAd Mac IMAC IMAC
25 AddrGen | | AddrGen AddrGen
; i 1T ; @ MAC MAC MAC
A4 N

| X-Regs (32b) 1 h | Act-Regs (N32b), Mat-Regs (N?8b), and Vec-Regs (N8b) i
~ |adl||H anl <5 S
i = g T Y

Scalar ALU SIMD ALU | | SIMD PWL 4V—Lane*N MAC Array\
Ctrl (ADD, SUB, (Sigmoid,

MAC| | MAC| |MAC| | MAC

N

Actlvatlon Vector Reg 32b

siltloc Pow2) MAC| |MAC| [ MAC| | MAC N*N MAC Array
64-bit PM [~ TV | L] [viac] [wac] [wac][wac
(IF, ID) IR' mac| [mac] [ mac )
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FlexACC Architecture (5)

e Scalar arithmetic is carried out in each lane of SIMD

* SIMD also includes piecewise linear functions (PWL) with

lookup tables

RISC-V

DNN acceleration (SIMD, MAC Array)
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Application-Specific Instruction Set (1)

e FlexACC ISA is a 64b VLIW
with four instruction slots

63 3231 20 19 10 09 00
RISC-V Slot Vector Slot VM 1 VMO
ALU, DIV 0110011 Vector Move Load Vec | Load Vec
ALU immd. 0010011 X & Act Load Mat | Load Mat
Load 0000011 Vec <& Vec Load Act Load Act
Store 0100011 Mat & Mat Store Vec | Store Vec
Branch 1100011 Act <& Act Store Mat | Store Mat
Jump 1101111 Act <= Vec Store Act | Store Act
Jump & link register 1100111
Load upperimmd. |0110111|| MAC Instructions
RISC-V Extensions MatVecMulAdd
Load w/ pm 0001011 MatVecMul
Store w/ pm 0101011|| SIMD Instructions
Zero overhead loops (1111011 Vector PWL
Boolean (min/max) Vector ALU

17



Application-Specific Instruction Set (2)

e RISC-V Slot includes
baseline 32b instructions
with some extensions

Boolean (min/max)

63 32
RISC-V Slot

ALU, DIV 0110011

ALU immd. 0010011

Load 0000011

Store 0100011

Branch 1100011

Jump 1101111

Jump & link register |1100111

Load upperimmd. |0110111
RISC-V Extensions

Load w/ pm 0001011

Store w/ pm 0101011

Zero overhead loops (1111011

18



Application-Specific Instruction Set (3)

* Vector Slot
* Vector move instructions
* MAC instructions
* SIMD instructions

31 20

Vector Slot

Vector Move

X & Act

Vec <& Vec

Mat & Mat

Act & Act

Act < Vec

MAC Instructions

MatVecMulAdd

MatVecMul

SIMD Instructions

Vector PWL

Vector ALU

19



Application-Specific Instruction Set (4)

* Vector Memory Slots
e VMO and VM1

* Flexible load/store of
vector variables from
vector memories

19 1009 00

VM 1

VM 0

Load Vec

Load Vec

Load Mat

Load Mat

Load Act

Load Act

Store Vec

Store Vec

Store Mat

Store Mat

Store Act

Store Act
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Simultaneous Computation & Memory Access

* Several techniques are leveraged to improve the overall performance
* Instruction level parallelism (ILP)
* load/store with address postmodify (hardware-based address increment)
e zero overhead loop (ZLP)

* The combination of ILP, address postmodify, and ZLP ensures continuous
dataflow and zero delay during sequential MAC operations.

RISC-V Vector VM1 VMO
NOP | MatVecMulAdd | Load Mat | Load Vec
/ AN —

MAC instr. that takes Mat-Reg, Vec-Reg Load matrix/vector from VM1/VMO to
and accumulates results to Act-Reg Mat-Reg/Vec-Reg for next MAC instr.

21
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Tensor Tiling

e Tensor tiling is an essential step to map vectors and matrices to
vector memories (VM1 and VMO)

* For example, software vector is tiled along one dimension and
matrix is tiled along two dimensions

Tile 0| Tile 1

Tile O Tile 1
)

Tile 0 Tile 1 Tile O

Tile 1
)

Software Vector/Matrix Hardware Vector Memory



Computation Mapping

* C code is compiled into FlexACC
instructions to utilize customized
hardware units

Conv2D (Inner-loops)
for (h = h_st; h < h_ed; h++) do (loop) x19, 6
for (w = w_st; w < w_ed; w++) do (loop) x23, 3
for (ic = ©; ic < Cin/N; ic++) vmac a@, m@, veO
acc_vec = MatVecMulAdd(....);

Attention (Softmax)
for (3 9; j < T/N; j++){ do (loop) x26, 31
act = pow2(act); pow2 (exp) a@, ao
sum += vsum(act); vsum (sum) x6, a@
} add x11, x9, x11
inv_sum = 65536 / sum div x11, x5, x11

GCN (Aggregation)
while (is_end != false) { do (loop) x24, 33

// Aggregate next node j (jump) 10
for (k = 2; k < Cout/N; k++){ o
........................ vadd al, a@
S S —
} bne (branch) x2,x6,-10

24



Sequential and Irregular Memory Access

e Sequential memory access leverages hardware-based address generators
to increment addresses by constant offsets

* Irregular access patterns can only be managed in a software-based
approach with additional scalar or control instructions

* For efficient computations, loop structures of DNN should be arranged in
a way that the memory access of the inner-most loop is sequential

25



CNN Example

e Conv2D operation involves convolution of
* Input Image . X[Hin][Win][Cin]
* Weight filters : W[Cout][H][W][Cin]
e Output Image : Y[Hout][Wout][Cout]

e 2D tiling on Cin and Cout => MatVecMpyAdd

* Inner Loop:
Hardware-based address increment is leveraged

* Quter Loops:
Address is computed by software-based approach

Y[Hout][Wout][Cout] W([Cout][H][W][Cin]

// Tiled Weight Tensor: W[Cout/N][H] [W] [Cin/N] [N] [N]
// Tiled Input Tensor: x[Hin ][Win ][Cin/N] [N]
// Tiled output Tensor: y[Hout] [Wout] [Cin/N] [N]

for (ho = 0; ho < Hout; ho++) {
for (wo = J; wo < Wout; wo++) |
for (co = 0; co < Cout/N; co++) { // tiled Cout
acc_vec = 0;

// CPU compute base address of output

// and start/end input (hi, wi) and weight (h, w)
h st = max(PAD - ho, U); w_st = max(PRD - wo, U);
hi_St = =PAD + ho*STRIDE; Wi_St = =PLD + wo*STRIDE;
h =d = min(Hin-hi st, H); w ed = min(Win-wi st, W);

for (h = h_st; h < h_ed; h++) { weight height
for (w = w st; w < w_ad; w++) { weight width
// CPU compute base address of input/weight
hi = hi st + h; wi = wi st + w;
for (ci = 0; ci < Cin/N; ci++) { // tiled Cin
acc vec s MatVecMpyAdd (acc vec,
Wlcol [L] [w] [ci]l, =[hi][wi][cil);

}

} Matrix-Vector Multiply and Add
}

y[ho] [wo] [co]l = acc vec;

X[Hin][Win][Cin] 26
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FlexACC Performance

* We simulate FlexACC (vector size N=8) on 6 selected DNN workloads

* Decent MAC utilization is achieved on Conv2D (84%) and LSTM (71%)

* Attention and GCN involves more non-MAC operations, resulting in SIMD
bottlenecks

3000
BN MAC

2500+ — 5IMD
2000 - Bl Move

RISC-V/
1500 - W Others
1000+

500 -

0 MatMulConv2d GRU LST

Performance (us), N=8



FlexACC Energy

* Since output stationary dataflow is used, energy is dominated by
load/store data from vector memories

* We further explore reducing memory access with weight stationary flow

150
Bl VMs

e PM/OM
B MAC
. sMD

Rl SC-\f
1 Others

125 -
100 -
1351
501
25

0
MatMulConv2d GRU LSTM Atten. GCMN

Energy (1J), N=8
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Comparisons with Fixed-Datapath Designs (1)

* FlexACC is compared with two standalone fixed-datapath
(hardwired-datapath or ASIC) Conv2D and LSTM engines

* Performance comparisons
* 10% or 30% latency increase than FIXED-Conv2D or FIXED-LSTM

I MAC
[ Others

2000

1750+

1500+

1250+

1000~

750~

500~

250

0,
FlexACC FIXED FlexACC FIXED
Conv2d Conv2d LSTM LSTM

Performance comparison (ps), N=8



Comparisons with Fixed-Datapath Designs (2)

* Energy comparisons
* 15% or 11% energy increase than FIXED-Conv2D or FIXED-LSTM
* The energy gap is related to instruction fetch from program memory

120

100

80

60

40

20

0 i
FlexACC FIXED FlexACC FIXED
Conv2d Conv2d LSTM LSTM

Energy comparison (pJ), N=8
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FlexACC Design Space Explorations

* Vector size of FlexACC is configurable for N =4, 8, 16 or 32

* More studies are provided to discuss how hardware performance can
be affected by different design choices

1200um
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e PMDM

Bl MAC
200000 l simD
B RISC/Others

DNN
acceleration

600000

4000001
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200000
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wnoos
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Conclusion

* We propose and implement FlexACC accelerator with an application-
specific ISA for DNN inferences

* Experimental results affirm FlexACC can perform a wide range of DNN
inferences with decent performance

* A head-to-head comparison to fixed-datapath baselines further reveals
that FlexACC has moderate overhead of achieving high programmability
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