100 18)

2 -

FlexACC: A Programmable Accelerator
with Application-Specific ISA for Flexible
Deep Neural Network Inference

En-Yu (Daniel) Yang, Tianyu Jia, David Brooks, Gu-Yeon Wei
Harvard University, Cambridge, MA

ASIP University Day
Wed, Nov 17, 2021
Virtual

This work has also been accepted and presented at 2021 IEEE 32nd International Conference on Application-specific Systems,
Architectures and Processors (ASAP)

Outline

* Introduction and Motivation
* Proposed FlexACC Design

e Software Mapping

e Experimental Results

Introduction

* DNN has become important in many application domains like image
classification, speech recognition, natural language processing, etc.

* Diverse types of DNN models are proposed to solve different tasks

=2 -5

X1 X2 X3 Xn

MLP LSTM/GRU
@ Self-Attention
T 11
Q K v

CNN Transformer Graph

DNN Workload Analysis

 Different DNN models have different percentages of MAC and
non-MAC operations

* Non-MAC operations are critical in overall performance, and
computation patterns differ significantly in different DNN types
e LSTM: Sigmoid/Tanh, vector operations
e Attention: Softmax

0.2% 3.0% 7.2% 13.5%
MAC
non-MAC
99.8% 97.0% 92.8% 86.5%
Conv2D LSTM Attention GCN

(CNN) (Transformer)

Limitations in Prior Works

* DNNs are changing rapidly, but accelerators are
customized for a small range of models

Serdes Router Interface <

*_I * || Buffets
Addr Distributed Input
Gen Weight Buffer Buffer

=

LR

Y ¥V ¥ vV 3 V¥ 4F ¢
‘actor | Mector | Vector| [Vector|[Vector|| Vector| | Vector| Vector
MAC || MAC || MAC || MAC || MAC || MAC || MAC I MAC

S

el

|—’ + Trunc RelLU
L, DBuffets * —" Pooling Bias
 Limited programmability (or flexibility) makes Acercen| FEEEFFTTHT
existing hardware hard to adapt to the rapid SIMBA PE for CNN
evolution of software T v — v
1MB Buffer
: I | I I | I axe
| I | | [
, | !
| |MAcI|MACHMAC||MACIIMACHMACHMAC||MAC|
' I !
: [mulator registers | PE Core
I A ponent Bias —
R
v T T T T T T T T AdvationUnit !
:. | Tanh | [sigmoid | [EAdd | [carsme]t
v Buffe 1
Shao, Yakun Sophia, et al. "Simba: Scaling deep-learning inference with multi-chip-module-based architecture." MICRO 2019. I Register Vectors _EMu | [Rew | | 1x [l s :
Tambe, Thierry, et al. "9.8 A 25mm 2 SoC for loT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech L-- -
Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET." ISSCC 2021. FlexASR PE for LSTM/G RU

Supporting Wide Range of DNNs

* How to make DNN accelerator desigh more programmable
(or flexible)?

* What is the cost (e.g., hardware area/energy) of supporting
more DNN models in a design?

Accelerator Design Choices (1)

DNN
Accelerators

* Fixed-Datapath
* Controlled by a set of configuration registers

with a host CPU
| Fixed-Datapath | Programmable

* Higher customization but lower flexibility
* Examples: NVDLA, SIMBA, FlexASR, etc.

Program
conflgs
Tremendous engineering effort

is often needed to design for a NVDLA
wide range of DNNs

DRANI

DBBIF

"
SWIF"
-
rd

.I |. :
NVDLA, http://nvdla.org/ NVDLA + Host CPU |

Accelerator Design Choices (2)

* Programmable Datapath
* General-purpose CPU with customized hardware units
* Fine-grained controller/instruction set
 Examples: Cambricon, etc.

* Weakness in Cambricon
* Overhead on scheduling of multicycle instructions

DNN
Accelerators

leed-Datapath | Programmable |

Proposed FlexACC: programmable
datapath with fine-grained
"single cycle" instructions for
different software patterns

Liu, Shaoli, et al. "Cambricon: An instruction set architecture for neural networks." ISCA 2016.

Scalar Func.

Vector Func. Uni
{Vector DMAS)

Matrix Func. Un
{Matrix DMAS)

Inflexible dataflow
Cambricon Accelerator

10 Interface

Key Contributions of This Work

* A comprehensive workload analysis is conducted on a diverse set of
DNN models (i.e., CNN, LSTM, Transformer, and GCN)

* We designh FlexACC with tightly coupled RISC-V and customized DNN
acceleration instructions to support different DNN workloads

* We quantitatively compare FlexACC with fixed-datapath baselines to
study the cost of programmability

Outline

* Introduction and Motivation
* Proposed FlexACC Design

e Software Mapping

e Experimental Results

10

ASIP Designer: A Brief Overview

 Starting from a general-purpose RISC ISA template
* Extend it by adding new instructions and customized hardware units
e Codesign both hardware and compiler interface simultaneously

* Test/optimize hardware by running compiled C code on provided Instruction Set Simulator

void sort(int A[], int len)

for (int 1 =0 ; 1 < len-1; i++) {
int loc = find min location(A,i,len);
int temp = A[i];

Add new instructions ALL] =~ Allocl;

Al[loc] = temp;
MatVecMpy rd, rsi, rs2 } }
Sigmoid rd, rs1 e . — .. .-
ISS command = <PROCDIR>/../iss/tnlp ca dbg
------ ISS mode = Cycle accurate
o o . Core name = ::iss
» Define compiler interface » e o e
v8int_t = MatVecMpy(v8int_t, v64int8_t, v8int8_t) Tnstruction count = 1199
v8int_t = Sigmoid(v8int_t) PC = 11
A A A AT SP = 2048
Stack area: DMb [512 .. 2048] growing down
" Minimum stack pointer value = 1960
RISC baseline hardware Codesign of hardware/compiler Simulate with compiled Ccode |

FlexACC Architecture (1)

* FlexACC architecture combines RISC-V pipeline and DNN acceleration units

* Program control unit (PCU) fetches instructions from program memory
(PM) to issue control signals

RISC-V DNN acceleration (SIMD, MAC Array)
32-bit DM 8N-bit N-bank VMO 8N-bit N-bank VM1
5| AddrGen | | AddrGen AddrGen
t 1 ﬂ H @
AV A4
| X-Regs (32b) 1 h | Act-Regs (N32b), Mat-Regs (N?8b), and Vec-Regs (N8b)
> |l Ctrl | ”
-7 t @ @ @
Scalar ALU SIMD ALU | |SIMD PWL | | N-Lane*N MAC Array
Ctrl (ADD, SUB, (Sigmoid, mac| [mac| mac| | mac
MUL ...) Pow?2)
mac| [mac| [mac| | mac
64-bit PM |_|t Ll M MAC| Imac| [mac
:r(mlml MAC]| | MAC| | MAC

FlexACC Architecture (2)

 Scalar operations are performed on RISC-V pipeline with data
memory (DM), general purpose registers (X-Regs), and scalar ALU

RISC-V DNN acceleration (SIMD, MAC Array)

32-bit DM]\ 8N-bit N-bank VMO 8N-bit N-bank VM1

25| AddrGe AddrGen ﬂ AddrGen
, = g

t

N N
| X-Regﬁ\(32b}i = || h | Act-Regs (N32b), Mat-Regs (N?8b), and Vec-Regs (N8b)
1r

S N

Scalar ALU SIMD ALU | |SIMD PWL | | N-Lane*N MAC Array
\, -
(ADD, SUB, (Sigmoid, mac | [mac| [mac| | mac
MUL ...) Pow?2)
mAc| |mac| |mac| |MAC
64-bit PM (Il;CltEl)] |_|C:[L| |_|.t L' Iﬂl MAC| |mac||mac
’ _;I_(mlml MAC) | MAC) | MAC

FlexACC Architecture (3)

* DNN acceleration datapath includes customized vector memories
(VMO, VM1) and different types of vector or matrix registers

* Note: vector size N is a configurable architectural parameter

RISC-V DNN acceleration (SIMD, MAC Array

32-bit DM/ 8N-bit N-bank VMO 8N-bit N-bank VM1
AddrQen| | AddrGen AddrGen
e e =
[X-Regs (32b), Ctll N Act- Regs (N32b), Mat-Regs (N%8b), and Vec-Regs (N8
Scalar ALU SIMD ALU i SIMD PWL || N-Lane*N MAC Array
Ctrl (ADD, SUB, (Sigmoid, mac| Imac| [mac| | mac
MUL...) HE MAC | | MAC | | MAC| | MAC
64-bit PM PCU ._lcf Li.l |_|Ct Ll mac||mac| [mac||mac

(IF, ID) =I—CtT||MAc mAc| Imac| [mac

FlexACC Architecture (4)

* MAC Array computes matrix-vector multiply
with 8b multiplication and 32b addition

* Reuse of vector register via broadcasting

Matrix Reg 8b
(Transposed) vector Reg 8b

RISC-V DNN acceleration (SIMD, MAC Array) MAC| IMAC| [MAC MAC
32-bit DM 8N-bit N-bank VMO i MAC] MAC] [MAC] [MAC
-bi -bit N-ban 8N-bit N-bank VM1 vAd Mac IMAC IMAC
25 AddrGen | | AddrGen AddrGen
; i 1T ; @ MAC MAC MAC
A4 N

| X-Regs (32b) 1 h | Act-Regs (N32b), Mat-Regs (N?8b), and Vec-Regs (N8b) i
~ |adl||H anl <5 S
i = g T Y

Scalar ALU SIMD ALU | | SIMD PWL 4V—Lane*N MAC Array\
Ctrl (ADD, SUB, (Sigmoid,

MAC| | MAC| |MAC| | MAC

N

Actlvatlon Vector Reg 32b

siltloc Pow2) MAC| |MAC| [MAC| | MAC N*N MAC Array
64-bit PM [~ TV | L] [viac] [wac] [wac][wac
(IF, ID) IR' mac| [mac] [mac)

15

FlexACC Architecture (5)

e Scalar arithmetic is carried out in each lane of SIMD

* SIMD also includes piecewise linear functions (PWL) with

lookup tables

RISC-V

DNN acceleration (SIMD, MAC Array)

32-bit DM

8N-bit N-bank VMO

25 AddrGen

AddrGen

8N-bit N-bank VM1

1

ﬂ

AddrGen
+ @

t
7

A4

| X-Regs (32b) 1

> |l

h | Act-Regs (N32b), Mat-Regs (N?8b), and Vec-Regs (N8b)

Scalar ALU
Ctrl

Ctrl |
] M

64-bit PM

PCU \'\

(IF, ID)

/SIMD ALU

(ADD, SUB,
MUL ...)

Ctrl

SIMD PWL
(Sigmoid,
Pow2)

| (ﬁ'm MAC

U

N-Lane*N MAC Array

MAC

MAC

MAC| | MAC
MAC| | MAC

MAC

MAC

MAC| | MAC

MAC

MAC

MAC

MAC

Full Precision

PWL
-4 -z ; 2
PWL Sigmoid

16

Application-Specific Instruction Set (1)

e FlexACC ISA is a 64b VLIW
with four instruction slots

63 3231 20 19 10 09 00
RISC-V Slot Vector Slot VM 1 VMO
ALU, DIV 0110011 Vector Move Load Vec | Load Vec
ALU immd. 0010011 X & Act Load Mat | Load Mat
Load 0000011 Vec <& Vec Load Act Load Act
Store 0100011 Mat & Mat Store Vec | Store Vec
Branch 1100011 Act <& Act Store Mat | Store Mat
Jump 1101111 Act <= Vec Store Act | Store Act
Jump & link register 1100111
Load upperimmd. |0110111|| MAC Instructions
RISC-V Extensions MatVecMulAdd
Load w/ pm 0001011 MatVecMul
Store w/ pm 0101011|| SIMD Instructions
Zero overhead loops (1111011 Vector PWL
Boolean (min/max) Vector ALU

17

Application-Specific Instruction Set (2)

e RISC-V Slot includes
baseline 32b instructions
with some extensions

Boolean (min/max)

63 32
RISC-V Slot

ALU, DIV 0110011

ALU immd. 0010011

Load 0000011

Store 0100011

Branch 1100011

Jump 1101111

Jump & link register |1100111

Load upperimmd. |0110111
RISC-V Extensions

Load w/ pm 0001011

Store w/ pm 0101011

Zero overhead loops (1111011

18

Application-Specific Instruction Set (3)

* Vector Slot
* Vector move instructions
* MAC instructions
* SIMD instructions

31 20

Vector Slot

Vector Move

X & Act

Vec <& Vec

Mat & Mat

Act & Act

Act < Vec

MAC Instructions

MatVecMulAdd

MatVecMul

SIMD Instructions

Vector PWL

Vector ALU

19

Application-Specific Instruction Set (4)

* Vector Memory Slots
e VMO and VM1

* Flexible load/store of
vector variables from
vector memories

19 1009 00

VM 1

VM 0

Load Vec

Load Vec

Load Mat

Load Mat

Load Act

Load Act

Store Vec

Store Vec

Store Mat

Store Mat

Store Act

Store Act

20

Simultaneous Computation & Memory Access

* Several techniques are leveraged to improve the overall performance
* Instruction level parallelism (ILP)
* load/store with address postmodify (hardware-based address increment)
e zero overhead loop (ZLP)

* The combination of ILP, address postmodify, and ZLP ensures continuous
dataflow and zero delay during sequential MAC operations.

RISC-V Vector VM1 VMO
NOP | MatVecMulAdd | Load Mat | Load Vec
/ AN —

MAC instr. that takes Mat-Reg, Vec-Reg Load matrix/vector from VM1/VMO to
and accumulates results to Act-Reg Mat-Reg/Vec-Reg for next MAC instr.

21

Outline

* Introduction and Motivation
* Proposed FlexACC Design

* Software Mapping

e Experimental Results

22

Tensor Tiling

e Tensor tiling is an essential step to map vectors and matrices to
vector memories (VM1 and VMO)

* For example, software vector is tiled along one dimension and
matrix is tiled along two dimensions

Tile 0| Tile 1

Tile O Tile 1
)

Tile 0 Tile 1 Tile O

Tile 1
)

Software Vector/Matrix Hardware Vector Memory

Computation Mapping

* C code is compiled into FlexACC
instructions to utilize customized
hardware units

Conv2D (Inner-loops)
for (h = h_st; h < h_ed; h++) do (loop) x19, 6
for (w = w_st; w < w_ed; w++) do (loop) x23, 3
for (ic = ©; ic < Cin/N; ic++) vmac a@, m@, veO
acc_vec = MatVecMulAdd(....);

Attention (Softmax)
for (3 9; j < T/N; j++){ do (loop) x26, 31
act = pow2(act); pow2 (exp) a@, ao
sum += vsum(act); vsum (sum) x6, a@
} add x11, x9, x11
inv_sum = 65536 / sum div x11, x5, x11

GCN (Aggregation)
while (is_end != false) { do (loop) x24, 33

// Aggregate next node j (jump) 10
for (k = 2; k < Cout/N; k++){ o
........................ vadd al, a@
S S —
} bne (branch) x2,x6,-10

24

Sequential and Irregular Memory Access

e Sequential memory access leverages hardware-based address generators
to increment addresses by constant offsets

* Irregular access patterns can only be managed in a software-based
approach with additional scalar or control instructions

* For efficient computations, loop structures of DNN should be arranged in
a way that the memory access of the inner-most loop is sequential

25

CNN Example

e Conv2D operation involves convolution of
* Input Image . X[Hin][Win][Cin]
* Weight filters : W[Cout][H][W][Cin]
e Output Image : Y[Hout][Wout][Cout]

e 2D tiling on Cin and Cout => MatVecMpyAdd

* Inner Loop:
Hardware-based address increment is leveraged

* Quter Loops:
Address is computed by software-based approach

Y[Hout][Wout][Cout] W([Cout][H][W][Cin]

// Tiled Weight Tensor: W[Cout/N][H] [W] [Cin/N] [N] [N]
// Tiled Input Tensor: x[Hin][Win][Cin/N] [N]
// Tiled output Tensor: y[Hout] [Wout] [Cin/N] [N]

for (ho = 0; ho < Hout; ho++) {
for (wo = J; wo < Wout; wo++) |
for (co = 0; co < Cout/N; co++) { // tiled Cout
acc_vec = 0;

// CPU compute base address of output

// and start/end input (hi, wi) and weight (h, w)
h st = max(PAD - ho, U); w_st = max(PRD - wo, U);
hi_St = =PAD + ho*STRIDE; Wi_St = =PLD + wo*STRIDE;
h =d = min(Hin-hi st, H); w ed = min(Win-wi st, W);

for (h = h_st; h < h_ed; h++) { weight height
for (w = w st; w < w_ad; w++) { weight width
// CPU compute base address of input/weight
hi = hi st + h; wi = wi st + w;
for (ci = 0; ci < Cin/N; ci++) { // tiled Cin
acc vec s MatVecMpyAdd (acc vec,
Wlcol [L] [w] [ci]l, =[hi][wi][cil);

}

} Matrix-Vector Multiply and Add
}

y[ho] [wo] [co]l = acc vec;

X[Hin][Win][Cin] 26

Outline

* Introduction and Motivation
* Proposed FlexACC Design

e Software Mapping

* Experimental Results

27

FlexACC Performance

* We simulate FlexACC (vector size N=8) on 6 selected DNN workloads

* Decent MAC utilization is achieved on Conv2D (84%) and LSTM (71%)

* Attention and GCN involves more non-MAC operations, resulting in SIMD
bottlenecks

3000
BN MAC

2500+ — 5IMD
2000 - Bl Move

RISC-V/
1500 - W Others
1000+

500 -

0 MatMulConv2d GRU LST

Performance (us), N=8

FlexACC Energy

* Since output stationary dataflow is used, energy is dominated by
load/store data from vector memories

* We further explore reducing memory access with weight stationary flow

150
Bl VMs

e PM/OM
B MAC
. sMD

Rl SC-\f
1 Others

125 -
100 -
1351
501
25

0
MatMulConv2d GRU LSTM Atten. GCMN

Energy (1J), N=8

29

Comparisons with Fixed-Datapath Designs (1)

* FlexACC is compared with two standalone fixed-datapath
(hardwired-datapath or ASIC) Conv2D and LSTM engines

* Performance comparisons
* 10% or 30% latency increase than FIXED-Conv2D or FIXED-LSTM

I MAC
[Others

2000

1750+

1500+

1250+

1000~

750~

500~

250

0,
FlexACC FIXED FlexACC FIXED
Conv2d Conv2d LSTM LSTM

Performance comparison (ps), N=8

Comparisons with Fixed-Datapath Designs (2)

* Energy comparisons
* 15% or 11% energy increase than FIXED-Conv2D or FIXED-LSTM
* The energy gap is related to instruction fetch from program memory

120

100

80

60

40

20

0 i
FlexACC FIXED FlexACC FIXED
Conv2d Conv2d LSTM LSTM

Energy comparison (pJ), N=8

31

FlexACC Design Space Explorations

* Vector size of FlexACC is configurable for N =4, 8, 16 or 32

* More studies are provided to discuss how hardware performance can
be affected by different design choices

1200um

1000000 { W VMs
e PMDM

Bl MAC
200000 l simD
B RISC/Others

DNN
acceleration

600000

4000001

Area (um?)

200000

D.

4 8 16 32

Area vs Vector Size N Layout of FlexACC with N=8

wnoos

32

Conclusion

* We propose and implement FlexACC accelerator with an application-
specific ISA for DNN inferences

* Experimental results affirm FlexACC can perform a wide range of DNN
inferences with decent performance

* A head-to-head comparison to fixed-datapath baselines further reveals
that FlexACC has moderate overhead of achieving high programmability

33

Acknowledgement

Prof. Gu-Yeon Wei Prof. David Brooks *Prof. Tianyu Jia
Harvard University Harvard University Carnegie Mellon University

* | would like to thank my advisors and colleagues for their guidance and support in this project

* | would like to thank David Florez (from Synopsys) for his advice in hardware implementation with
ASIP Designer

* Prof. Tianyu Jia was a Postdoctoral Fellow at Harvard University during this project

34

183 160; 168
PrIzIarrrrrrrrrra

PR

Thank You

	FlexACC: A Programmable Accelerator with Application-Specific ISA for Flexible Deep Neural Network Inference
	Outline
	Introduction
	DNN Workload Analysis
	Limitations in Prior Works
	Supporting Wide Range of DNNs
	Accelerator Design Choices (1)
	Accelerator Design Choices (2)
	Key Contributions of This Work
	Outline
	ASIP Designer: A Brief Overview
	FlexACC Architecture (1)
	FlexACC Architecture (2)
	FlexACC Architecture (3)
	FlexACC Architecture (4)
	FlexACC Architecture (5)
	Application-Specific Instruction Set (1)
	Application-Specific Instruction Set (2)
	Application-Specific Instruction Set (3)
	Application-Specific Instruction Set (4)
	Simultaneous Computation & Memory Access
	Outline
	Tensor Tiling
	Computation Mapping
	Sequential and Irregular Memory Access
	CNN Example
	Outline
	FlexACC Performance
	FlexACC Energy
	Comparisons with Fixed-Datapath Designs (1)
	Comparisons with Fixed-Datapath Designs (2)
	FlexACC Design Space Explorations
	Conclusion
	Acknowledgement
	Thank You

