
FlexACC: A Programmable Accelerator 
with Application-Specific ISA for Flexible 

Deep Neural Network Inference

En-Yu (Daniel) Yang, Tianyu Jia, David Brooks, Gu-Yeon Wei
Harvard University, Cambridge, MA

This work has also been accepted and presented at 2021 IEEE 32nd International Conference on Application-specific Systems, 
Architectures and Processors (ASAP)

ASIP University Day
Wed, Nov 17, 2021

Virtual



Outline

• Introduction and Motivation
• Proposed FlexACC Design
• Software Mapping
• Experimental Results

2



Introduction

• DNN has become important in many application domains like image 
classification, speech recognition, natural language processing, etc.

• Diverse types of DNN models are proposed to solve different tasks 

3



DNN Workload Analysis

• Different DNN models have different percentages of MAC and 
non-MAC operations

• Non-MAC operations are critical in overall performance, and 
computation patterns differ significantly in different DNN types

• LSTM: Sigmoid/Tanh, vector operations
• Attention: Softmax

4



Limitations in Prior Works 

• DNNs are changing rapidly, but accelerators are 
customized for a small range of models

• Limited programmability (or flexibility) makes 
existing hardware hard to adapt to the rapid 
evolution of software

5

SIMBA PE for CNN

FlexASR PE for LSTM/GRU

Shao, Yakun Sophia, et al. "Simba: Scaling deep-learning inference with multi-chip-module-based architecture." MICRO 2019.
Tambe, Thierry, et al. "9.8 A 25mm 2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech 
Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET." ISSCC 2021.



Supporting Wide Range of DNNs

• How to make DNN accelerator design more programmable 
(or flexible)?

• What is the cost (e.g., hardware area/energy) of supporting
more DNN models in a design? 

6



Accelerator Design Choices (1) 

• Fixed-Datapath
• Controlled by a set of configuration registers 

with a host CPU
• Higher customization but lower flexibility 
• Examples: NVDLA, SIMBA, FlexASR, etc.

7

Program 
configs

NVDLA + Host CPU

NVDLA

CPU

DNN 
Accelerators

Fixed-Datapath Programmable

Tremendous engineering effort 
is often needed to design for a 

wide range of DNNs 

NVDLA, http://nvdla.org/



Accelerator Design Choices (2) 

• Programmable Datapath
• General-purpose CPU with customized hardware units 
• Fine-grained controller/instruction set
• Examples: Cambricon, etc.

• Weakness in Cambricon
• Overhead on scheduling of multicycle instructions

8Cambricon Accelerator Liu, Shaoli, et al. "Cambricon: An instruction set architecture for neural networks." ISCA 2016.

DNN 
Accelerators

Fixed-Datapath Programmable

Proposed FlexACC: programmable 
datapath with fine-grained 

"single cycle" instructions for 
different software patterns

Memory Queue Unit

Inflexible dataflow



Key Contributions of This Work 

• A comprehensive workload analysis is conducted on a diverse set of 
DNN models (i.e., CNN, LSTM, Transformer, and GCN)

• We design FlexACC with tightly coupled RISC-V and customized DNN 
acceleration instructions to support different DNN workloads

• We quantitatively compare FlexACC with fixed-datapath baselines to 
study the cost of programmability

9



Outline

• Introduction and Motivation
• Proposed FlexACC Design
• Software Mapping
• Experimental Results

10



ASIP Designer: A Brief Overview

• Starting from a general-purpose RISC ISA template

• Extend it by adding new instructions and customized hardware units

• Codesign both hardware and compiler interface simultaneously

• Test/optimize hardware by running compiled C code on provided Instruction Set Simulator

Add new instructions
MatVecMpy rd, rs1, rs2

Sigmoid rd, rs1
……

Define compiler interface
v8int_t = MatVecMpy(v8int_t, v64int8_t, v8int8_t)

v8int_t = Sigmoid(v8int_t )
……

RISC baseline hardware Codesign of hardware/compiler Simulate with compiled C code 11



FlexACC Architecture (1)

• FlexACC architecture combines RISC-V pipeline and DNN acceleration units
• Program control unit (PCU) fetches instructions from program memory 

(PM) to issue control signals

12



FlexACC Architecture (2)

• Scalar operations are performed on RISC-V pipeline with data 
memory (DM), general purpose registers (X-Regs), and scalar ALU

13



FlexACC Architecture (3)

• DNN acceleration datapath includes customized vector memories 
(VM0, VM1) and different types of vector or matrix registers

• Note: vector size N is a configurable architectural parameter

14



FlexACC Architecture (4)

• MAC Array computes matrix-vector multiply
with 8b multiplication and 32b addition

• Reuse of vector register via broadcasting  

15

N*N MAC Array

MAC
MAC
MAC
MAC

MAC
MAC
MAC
MAC

MAC
MAC
MAC
MAC

MAC
MAC
MAC
MAC

Vector Reg 8b
Matrix Reg 8b 
(Transposed)

Activation Vector Reg 32b 



FlexACC Architecture (5)

• Scalar arithmetic is carried out in each lane of SIMD
• SIMD also includes piecewise linear functions (PWL) with 

lookup tables

16

PWL Sigmoid



Application-Specific Instruction Set (1)

• FlexACC ISA is a 64b VLIW 
with four instruction slots

17



Application-Specific Instruction Set (2)

18

• RISC-V Slot includes 
baseline 32b instructions 
with some extensions



Application-Specific Instruction Set (3)

19

• Vector Slot
• Vector move instructions
• MAC instructions
• SIMD instructions



Application-Specific Instruction Set (4)

20

• Vector Memory Slots
• VM0 and VM1 

• Flexible load/store of 
vector variables from 
vector memories 



Simultaneous Computation & Memory Access 

• Several techniques are leveraged to improve the overall performance
• Instruction level parallelism (ILP)
• load/store with address postmodify (hardware-based address increment)
• zero overhead loop (ZLP)

• The combination of ILP, address postmodify, and ZLP ensures continuous 
dataflow and zero delay during sequential MAC operations.

21



Outline

• Introduction and Motivation
• Proposed FlexACC Design
• Software Mapping
• Experimental Results

22



Tensor Tiling

23

Software Vector/Matrix Hardware Vector Memory

• Tensor tiling is an essential step to map vectors and matrices to 
vector memories (VM1 and VM0)

• For example, software vector is tiled along one dimension and 
matrix is tiled along two dimensions 



Computation Mapping

• C code is compiled into FlexACC 
instructions to utilize customized 
hardware units

24



Sequential and Irregular Memory Access

• Sequential memory access leverages hardware-based address generators 
to increment addresses by constant offsets

• Irregular access patterns can only be managed in a software-based 
approach with additional scalar or control instructions

• For efficient computations, loop structures of DNN should be arranged in 
a way that the memory access of the inner-most loop is sequential

25



CNN Example
• Conv2D operation involves convolution of 

• Input Image   :  X[Hin][Win][Cin] 
• Weight filters : W[Cout][H][W][Cin]
• Output Image :  Y[Hout][Wout][Cout]

• 2D tiling on Cin and Cout => MatVecMpyAdd
• Inner Loop:

Hardware-based address increment is leveraged
• Outer Loops:  

Address is computed by software-based approach

26

Matrix-Vector Multiply and Add

weight height
weight width



Outline

• Introduction and Motivation
• Proposed FlexACC Design
• Software Mapping
• Experimental Results

27



FlexACC Performance

• We simulate FlexACC (vector size N=8) on 6 selected DNN workloads 

• Decent MAC utilization is achieved on Conv2D (84%) and LSTM (71%)
• Attention and GCN involves more non-MAC operations, resulting in SIMD 

bottlenecks

28
Performance (μs), N=8 



FlexACC Energy

• Since output stationary dataflow is used, energy is dominated by 
load/store data from vector memories

• We further explore reducing memory access with weight stationary flow

29

Energy (μJ), N=8 



Comparisons with Fixed-Datapath Designs (1)

• FlexACC is compared with two standalone fixed-datapath 
(hardwired-datapath or ASIC) Conv2D and LSTM engines

• Performance comparisons 
• 10% or 30% latency increase than FIXED-Conv2D or FIXED-LSTM

30Performance comparison (μs), N=8 



Comparisons with Fixed-Datapath Designs (2)

• Energy comparisons
• 15% or 11% energy increase than FIXED-Conv2D or FIXED-LSTM
• The energy gap is related to instruction fetch from program memory 

31Energy comparison (μJ), N=8 



FlexACC Design Space Explorations

• Vector size of FlexACC is configurable for N = 4, 8, 16 or 32
• More studies are provided to discuss how hardware performance can 

be affected by different design choices

32

Area vs Vector Size N Layout of FlexACC with N=8 



Conclusion

• We propose and implement FlexACC accelerator with an application-
specific ISA for DNN inferences

• Experimental results affirm FlexACC can perform a wide range of DNN 
inferences with decent performance

• A head-to-head comparison to fixed-datapath baselines further reveals 
that FlexACC has moderate overhead of achieving high programmability

33



Acknowledgement  

• I would like to thank my advisors and colleagues for their guidance and support in this project
• I would like to thank David Florez (from Synopsys) for his advice in hardware implementation with 

ASIP Designer

34

Prof. David Brooks
Harvard University

Prof. Gu-Yeon Wei
Harvard University

*Prof. Tianyu Jia
Carnegie Mellon University

* Prof. Tianyu Jia was a Postdoctoral Fellow at Harvard University during this project



Thank You


	FlexACC: A Programmable Accelerator with Application-Specific ISA for Flexible Deep Neural Network Inference
	Outline
	Introduction
	DNN Workload Analysis
	Limitations in Prior Works 
	Supporting Wide Range of DNNs
	Accelerator Design Choices (1) 
	Accelerator Design Choices (2) 
	Key Contributions of This Work 
	Outline
	ASIP Designer: A Brief Overview
	FlexACC Architecture (1)
	FlexACC Architecture (2)
	FlexACC Architecture (3)
	FlexACC Architecture (4)
	FlexACC Architecture (5)
	Application-Specific Instruction Set (1)
	Application-Specific Instruction Set (2)
	Application-Specific Instruction Set (3)
	Application-Specific Instruction Set (4)
	Simultaneous Computation & Memory Access 
	Outline
	Tensor Tiling
	Computation Mapping
	Sequential and Irregular Memory Access
	CNN Example
	Outline
	FlexACC Performance
	FlexACC Energy
	Comparisons with Fixed-Datapath Designs (1)
	Comparisons with Fixed-Datapath Designs (2)
	FlexACC Design Space Explorations
	Conclusion
	Acknowledgement  
	Thank You

