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Introduction

• DNN has become important in many application domains like image 
classification, speech recognition, natural language processing, etc.

• Diverse types of DNN models are proposed to solve different tasks 
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DNN Workload Analysis

• Different DNN models have different percentages of MAC and 
non-MAC operations

• Non-MAC operations are critical in overall performance, and 
computation patterns differ significantly in different DNN types

• LSTM: Sigmoid/Tanh, vector operations
• Attention: Softmax
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Limitations in Prior Works 

• DNNs are changing rapidly, but accelerators are 
customized for a small range of models

• Limited programmability (or flexibility) makes 
existing hardware hard to adapt to the rapid 
evolution of software
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SIMBA PE for CNN

FlexASR PE for LSTM/GRU

Shao, Yakun Sophia, et al. "Simba: Scaling deep-learning inference with multi-chip-module-based architecture." MICRO 2019.
Tambe, Thierry, et al. "9.8 A 25mm 2 SoC for IoT Devices with 18ms Noise-Robust Speech-to-Text Latency via Bayesian Speech 
Denoising and Attention-Based Sequence-to-Sequence DNN Speech Recognition in 16nm FinFET." ISSCC 2021.



Supporting Wide Range of DNNs

• How to make DNN accelerator design more programmable 
(or flexible)?

• What is the cost (e.g., hardware area/energy) of supporting
more DNN models in a design? 
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Accelerator Design Choices (1) 

• Fixed-Datapath
• Controlled by a set of configuration registers 

with a host CPU
• Higher customization but lower flexibility 
• Examples: NVDLA, SIMBA, FlexASR, etc.
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NVDLA, http://nvdla.org/



Accelerator Design Choices (2) 

• Programmable Datapath
• General-purpose CPU with customized hardware units 
• Fine-grained controller/instruction set
• Examples: Cambricon, etc.

• Weakness in Cambricon
• Overhead on scheduling of multicycle instructions

8Cambricon Accelerator Liu, Shaoli, et al. "Cambricon: An instruction set architecture for neural networks." ISCA 2016.
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"single cycle" instructions for 
different software patterns

Memory Queue Unit

Inflexible dataflow



Key Contributions of This Work 

• A comprehensive workload analysis is conducted on a diverse set of 
DNN models (i.e., CNN, LSTM, Transformer, and GCN)

• We design FlexACC with tightly coupled RISC-V and customized DNN 
acceleration instructions to support different DNN workloads

• We quantitatively compare FlexACC with fixed-datapath baselines to 
study the cost of programmability
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ASIP Designer: A Brief Overview

• Starting from a general-purpose RISC ISA template

• Extend it by adding new instructions and customized hardware units

• Codesign both hardware and compiler interface simultaneously

• Test/optimize hardware by running compiled C code on provided Instruction Set Simulator

Add new instructions
MatVecMpy rd, rs1, rs2

Sigmoid rd, rs1
……

Define compiler interface
v8int_t = MatVecMpy(v8int_t, v64int8_t, v8int8_t)

v8int_t = Sigmoid(v8int_t )
……

RISC baseline hardware Codesign of hardware/compiler Simulate with compiled C code 11



FlexACC Architecture (1)

• FlexACC architecture combines RISC-V pipeline and DNN acceleration units
• Program control unit (PCU) fetches instructions from program memory 

(PM) to issue control signals
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FlexACC Architecture (2)

• Scalar operations are performed on RISC-V pipeline with data 
memory (DM), general purpose registers (X-Regs), and scalar ALU
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FlexACC Architecture (3)

• DNN acceleration datapath includes customized vector memories 
(VM0, VM1) and different types of vector or matrix registers

• Note: vector size N is a configurable architectural parameter
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FlexACC Architecture (4)

• MAC Array computes matrix-vector multiply
with 8b multiplication and 32b addition

• Reuse of vector register via broadcasting  
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FlexACC Architecture (5)

• Scalar arithmetic is carried out in each lane of SIMD
• SIMD also includes piecewise linear functions (PWL) with 

lookup tables
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PWL Sigmoid



Application-Specific Instruction Set (1)

• FlexACC ISA is a 64b VLIW 
with four instruction slots
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Application-Specific Instruction Set (2)
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• RISC-V Slot includes 
baseline 32b instructions 
with some extensions



Application-Specific Instruction Set (3)
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• Vector Slot
• Vector move instructions
• MAC instructions
• SIMD instructions



Application-Specific Instruction Set (4)
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• Vector Memory Slots
• VM0 and VM1 

• Flexible load/store of 
vector variables from 
vector memories 



Simultaneous Computation & Memory Access 

• Several techniques are leveraged to improve the overall performance
• Instruction level parallelism (ILP)
• load/store with address postmodify (hardware-based address increment)
• zero overhead loop (ZLP)

• The combination of ILP, address postmodify, and ZLP ensures continuous 
dataflow and zero delay during sequential MAC operations.
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Tensor Tiling
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Software Vector/Matrix Hardware Vector Memory

• Tensor tiling is an essential step to map vectors and matrices to 
vector memories (VM1 and VM0)

• For example, software vector is tiled along one dimension and 
matrix is tiled along two dimensions 



Computation Mapping

• C code is compiled into FlexACC 
instructions to utilize customized 
hardware units
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Sequential and Irregular Memory Access

• Sequential memory access leverages hardware-based address generators 
to increment addresses by constant offsets

• Irregular access patterns can only be managed in a software-based 
approach with additional scalar or control instructions

• For efficient computations, loop structures of DNN should be arranged in 
a way that the memory access of the inner-most loop is sequential
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CNN Example
• Conv2D operation involves convolution of 

• Input Image   :  X[Hin][Win][Cin] 
• Weight filters : W[Cout][H][W][Cin]
• Output Image :  Y[Hout][Wout][Cout]

• 2D tiling on Cin and Cout => MatVecMpyAdd
• Inner Loop:

Hardware-based address increment is leveraged
• Outer Loops:  

Address is computed by software-based approach
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Matrix-Vector Multiply and Add

weight height
weight width



Outline

• Introduction and Motivation
• Proposed FlexACC Design
• Software Mapping
• Experimental Results

27



FlexACC Performance

• We simulate FlexACC (vector size N=8) on 6 selected DNN workloads 

• Decent MAC utilization is achieved on Conv2D (84%) and LSTM (71%)
• Attention and GCN involves more non-MAC operations, resulting in SIMD 

bottlenecks
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Performance (μs), N=8 



FlexACC Energy

• Since output stationary dataflow is used, energy is dominated by 
load/store data from vector memories

• We further explore reducing memory access with weight stationary flow
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Energy (μJ), N=8 



Comparisons with Fixed-Datapath Designs (1)

• FlexACC is compared with two standalone fixed-datapath 
(hardwired-datapath or ASIC) Conv2D and LSTM engines

• Performance comparisons 
• 10% or 30% latency increase than FIXED-Conv2D or FIXED-LSTM

30Performance comparison (μs), N=8 



Comparisons with Fixed-Datapath Designs (2)

• Energy comparisons
• 15% or 11% energy increase than FIXED-Conv2D or FIXED-LSTM
• The energy gap is related to instruction fetch from program memory 

31Energy comparison (μJ), N=8 



FlexACC Design Space Explorations

• Vector size of FlexACC is configurable for N = 4, 8, 16 or 32
• More studies are provided to discuss how hardware performance can 

be affected by different design choices
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Area vs Vector Size N Layout of FlexACC with N=8 



Conclusion

• We propose and implement FlexACC accelerator with an application-
specific ISA for DNN inferences

• Experimental results affirm FlexACC can perform a wide range of DNN 
inferences with decent performance

• A head-to-head comparison to fixed-datapath baselines further reveals 
that FlexACC has moderate overhead of achieving high programmability
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