

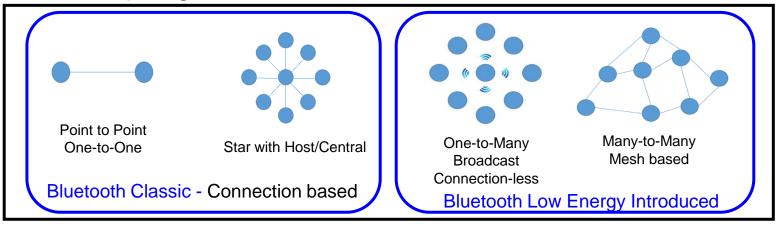
Bluetooth Low Energy – Growth Segments are Pushing Lower Power Requirements for Battery Powered Devices

Charles Dittmer, Low Power Wireless IP Product Marketing Manager – Sr Staff Synopsys ARC[®] Processor Summit 2022

Agenda

- How we got here Why Bluetooth Low Energy?
- Key growth segments & applications What's driving BLE adoption
- It's all about Battery Life: Design considerations
- Future BLE Enhancements

Bluetooth Past & Present


Bluetooth Classic:

- Historically supported Audio and PC Peripherals
- Battery life in hours/days

Bluetooth Low Energy:

- Battery life in months/years Radio is OFF most of the time
- Introduced the concept of connection-less communications
 - Advertising, Beaconing, Broadcasting
- Since 2014, Bluetooth SIG enhancements have been focused on BLE

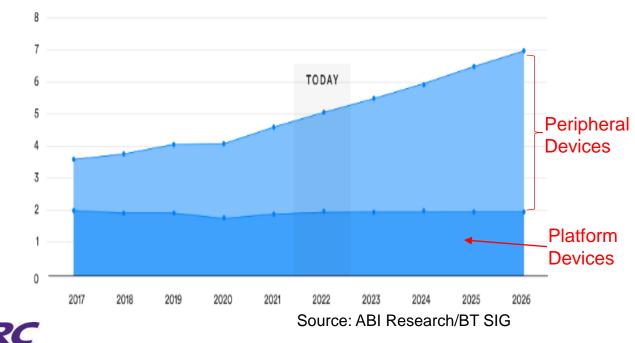
Network Topologies

Wireless devices streaming rich content like data, video, and audio Sensor devices sending small bits of data, using very little energy

Bluetooth Specification	Release
Bluetooth Classic 1.0 BR	1999
Bluetooth Classic (2.1 + ERD)	Jul 2007
Bluetooth Classic (3.0 + HS)	Apr 2009
Bluetooth 4.0 – Low Energy intro	Jul 2010
Bluetooth 4.2 (BLE Spec)	Dec 2014
Bluetooth 5 (BLE Spec 2mbps, LR)	Dec 2016
Bluetooth 5 w/Mesh (BLE Spec)	July 2017
Bluetooth 5.1 (Direction Finding)	Jan 2019
Bluetooth 5.2 (BLE Spec - LE Audio)	Dec 2020
Bluetooth 5.3 (BLE Spec)	July 2021

Bluetooth Market Growth

- The Bluetooth SIG/ABI Research forecasting a unit shipment CAGR of 9% (2022-2026)
- Many other market research firms are reporting Bluetooth CAGR of 11-15%


Total Annual Bluetooth[®] Shipments

Numbers in Billions 8 **—**U 6.5 6.0 6 5.5 5.1 4.7 5 4.1 4.13.8 3.6 3.2 3.0 2.7 3 2.4 2 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 Source: ABI Research/BT SIG

• BLE alone is expected to more than triple

- Growth of Platform Devices (PC, Tablet Phone) is flat.
- Peripherals will account for 72% of all shipments.

Bluetooth[®] Shipments Platform vs. Peripheral Numbers in Billions

Synopsys°

BLE Market Segmentation & Applications

Bluetooth Market/Application Segmentation

As defined by the Bluetooth SIG (2022 Market Update @ bluetooth.com)

Segment Use Cases

Audio Streaming (CAGR = 7%)

- Wireless Headsets (Hearables in many forms)
 - 3x growth in earbuds by 2026, 2.6x in overall hearable shipments
- Wireless Speakers (Bluetooth is now in nearly all wireless speakers)
 - Migrating from BT Classic to Bluetooth Low Energy
- In-Car Systems
 - Infotainment, Hands-free

(*) Significant growth for BLE as many legacy Bluetooth Classic products are migrating to BLE Data Transfer (CAGR = 12 %)

- Sports & Fitness (Wearables) (Migrating to BLE)
 - Fitness trackers, Smart Watches
- PC Peripherals & Accessories
 - HID: Keyboards, Mice, Trackballs (Migrating to BLE)
- Health & Wellness
 - Remote Heart rate & Blood pressure, Glucose monitoring
- Electronic Shelf Labels
 - Dynamic Pricing, Proximity
- Device Provisioning/Access for other wireless devices
 - Switches, Door Locks, Utility meters, etc.

Segment Use Cases

Location Services (CAGR = 25%)

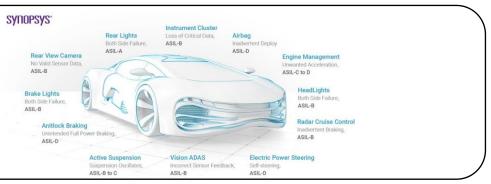
- Asset tracking: Real-time Location Systems (RTLS):
 - People, Work site tools, Hospital: Medical devices & Patients
- Indoor Navigation: Indoor Position System (IPS).
 Proximity Services:
 - Visitor navigation: Airports, Malls, Museums, Stadiums
 - Points of Interest, Proximity Marketing
- Digital keys: Secure entry via cell phone:
 - Car, Home, Office Buildings, Hotels
- Personal Item Finding:
 - Tags for keys, wallets, Purses, etc.

Device Networks (CAGR = 20%)

- Control Systems Mesh Networks
 - Lighting, Commercial Building Automation (CAGR 76%), Smart Home (Lighting, Appliance, Thermostats, Door locks)
- Monitory Systems: Wireless Sensor Networks (WSN)
 - Sensor networks for Light, Temperature, Vibration, Humidity, Occupancy
- Automation Systems:
 - HVAC, Security Access, Factory control (Industry 4.0)
- Automotive:
 - eVehicle Battery Monitoring System, Tire Pressure Monitors, Other Cable replacement

Automotive – Driving multiple BLE applications

Enabled via Central & Satellite BLE Modules in Cars


- Tire Pressure Monitoring System (TPMS)
- Battery Management Systems (BMS)
- Infotainment
- Cable Replacement
- Vehicle Servicing/Maintenance/Diagnostics
- Cloud Gateway

Use Cases enabled by Smart Phone

- Audio Steaming, Hands Free, Navigation
- Virtual Key Access (PaaK: Phone as a Key)
- Personalization / Configuration for Occupants
- Vehicle Diagnostics (OBD2 like)
- Pilot Parking ("assisted" or "remote" Parking)
- Car Charging monitoring Apps

Full Car Diagnostics

Automotive requirements for Electronic devices:

- ISO-26262 Conformance
 - FuSa Requirements (Functional Safety)
 - ASIL A-D (Automotive Safety Integrity Level)

or key fob car acces

- Increased Temperature Specs: AEC-Q100 Grade 0/1 (125 -150°C)
- Increase reliability testing: HTOL (High-Temperature Operating Life)

Processor Summit

Electronic Shelf Labels (ESL)

Market segmentation:

- Label size
- Display type: LCD, Segmented E-Paper, Full-Graphic E-Paper
 Less the 3 inches exhibit the highest growth rate: 17% CAGR (Allied Market Research)

Market size:

- Estimated 7000 labels in average Grocery Super Stores
 - ~64,000 Supermarkets in the US alone
 - ESL Market: 47.1% Supermarkets, 52.9% non-food retail & specialty stores

Use Cases:

- Enable Dynamic Pricing:
 - Daily Sales, Supply price changes, Happy hour for perishable goods
- Targeted Adverting
- Location finding: LED on ESL flashes when in proximity (Based on check list from Grocery Store App.)

ESL Product Expectations:

• >3-year battery life, Image stays on if battery dies, Easily changeable battery

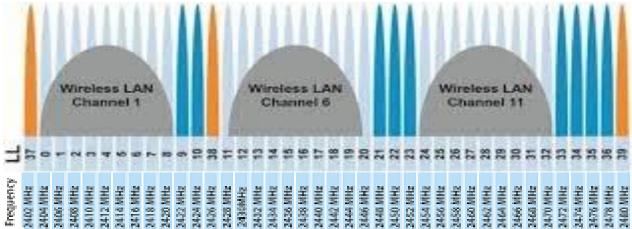
Hearables

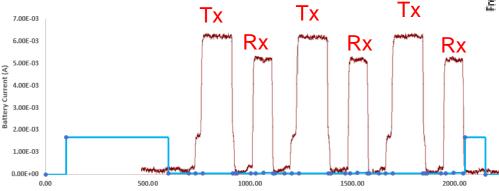
"The upcoming adoption of LE Audio will be the most recent in a long line of Bluetooth enhancements that have made a significant impact on wireless markets" Mark Powell | CEO | Bluetooth SIG, Inc.

- LE Audio is driving significant growth rates due to limited battery life
- Hearables is a \$26B market in 2020 and will grow at a 14% -18% CAGR thru 2025 (IDTechEx, others)
- In addition to Audio, Wearables are becoming biosensors for heart rate, core body temperature, eye movements, head tracking, Speech reco.

Hearables Segmentation

What do all the Bluetooth Growth Segments have in common?

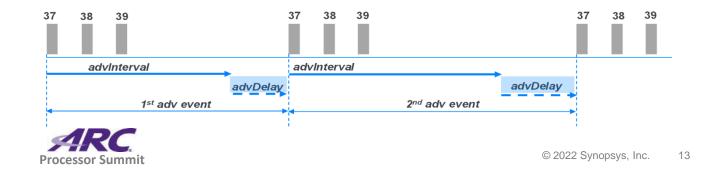

Longer Battery Life is Essential!



Understanding Bluetooth Low Energy Power Consumption

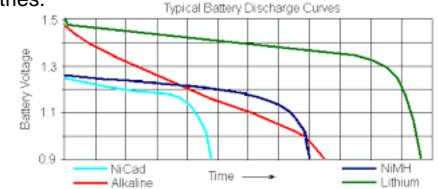
BLE turns on/off the radio very quickly. The radio is off the majority of time

3 Channels used for Advertising, Beaconing, Broadcasting



Time (us)

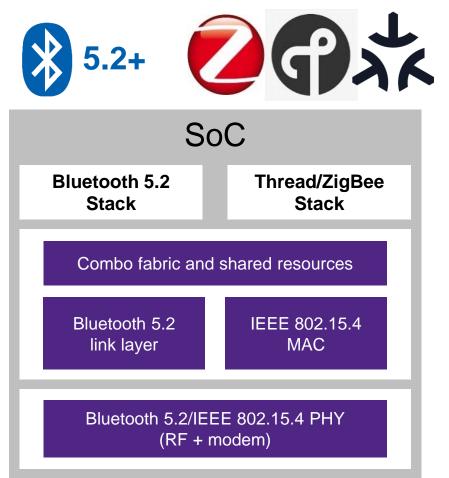
Radio current draw during beaconing on each of the 3 Advertising channels (Transmit and listen)


Advertising Internal: Integer multiple of 0.625 mS in the range of 20 to 10,485 mS

Extending Battery life = Extending Product life

Product Design Decisions:

- Trade-off between Throughput and Distance
 - Choice of PHY: 1 Mbps, 2 Mbps, Long Range (Coded PHY 125/500 Kbps)
 - Data Packet Length: Trade-off on duration on the air, Frequency of Tx, PER/retries.
- Distance is a function of both TX and RX capabilities
 - TX output power selection: 0 dBm, 6 dBm, 10+ dBm, use of external PA's.
 - Receive Sensitivity: The ability to "listen". -96 dBm to -98 dBm is desired
- Advertising/Beacon interval requirements for your application
 - Frequency of turning on/off the radio



- Battery Selection: Chemistry types based on physical size, cost, weight vs mAH capacity & discharge/decay rates
- Power supply efficiency: SoC working voltage range (Step down from Vbat).
 - LDOs vs. Switchers
- Selection of BLE silicon/IP Performance
 - TX/RX power consumption specifications will vary along with other SoC features and specifications
 - Make sure to convert from mA to mW at the RF supply voltage for apples-to-apples comparison

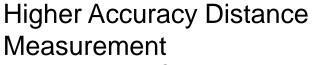
Complete Bluetooth Low Energy / 802.15.4 IP Solution

Silicon-Proven Controller and PHY for Low-Power IoT Applications & Wireless Audio

- Compliant with Bluetooth 5.2 & Mesh; 802.15.4 for ZigBee, Thread, Matter
- LE Audio support enables new Broadcast, Audio Sharing, Wireless Stereo applications
- Integrated with 3rd-party software stacks
- DesignWare Wireless Combo PHY (BLE/802.15.4)
 - TSMC55ULPeF, TSMC40ULP, TSMC40ULPeF, TSMC22ULL
 - Low BoM cost w/ fewer external components, simplifying board design
 - Industry best power consumption, Small footprint (PPA)
- DesignWare Wireless Combo Controller (BLE/802.15.4)
 - Concurrent connectivity between BLE and 802.15.4 (Thread & ZigBee)
 - LC3 Codec IP

Supporting the new Bluetooth Low Energy standards releases in 2023

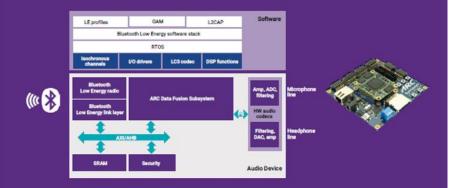
Bluetooth Future Enhancement


"The Bluetooth community continues to expand the capabilities of Bluetooth technology – powering innovation, creating new markets and redefining what's possible in wireless communications"

LE Audio

Expect additional enhancements to audio quality over BLE, supporting a wide range of hearable devices and broadcast audio applications

From Location-Based Services to Asset Tracking to Proximity based responses, methods will be developed to not only improve distance measurements but to identify the user and their preferences

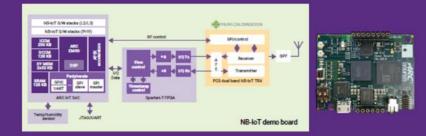


Higher Data Throughput

Applications like gaming and AR/VR along with other applications will drive the need for higher throughput across BLE communications

Take a look at the Low Power Wireless Demos

Bluetooth 5.2 Audio Demo with Synopsys IP


BLE Audio provides multiple audio streams

- Auracast[™] Audio Sharing
- Wireless stereo capabilities over BLE

Synopsys IP Includes

- Bluetooth Low Energy PHY and Link Layer
- LC3 Codec
- ARC Processors

Low-Power NB-IoT Communications

- Complete IoT communications solution (Cat-NB2) running on ARC® EM9D-based platform
- Full PHY/L2/L3 protocol stack
- Ideal for IoT wearables, industrial automation and smart energy applications

