

Addressing Processing, Safety and Security Needs for Evolving Automotive SoCs

Rich Collins, Director of Product Marketing, ARC Processors Synopsys ARC[®] Processor Summit 2022

Agenda

- Functional Safety Trends
- Functional Security Introduction
- ARC Functional Safety Processors
- Functional Safety Software and Tools
- Reference Designs and the Road Ahead
- Summary

Roadmap to Automation: Driver Driven to Driverless Vehicle

Processor Summit

Source: Frost & Sullivan: VDA Automotive SYS Konferenz 2014

Roadmap to Automation – FuSa Applications

Embedded Vision

- Analyzes camera data for safety-enhancement and autonomous driving
- Expert-level accuracy in classifying objects in fractions of a second
- Example Use Cases:
 - Lane departure detection
 - Parking assist / self-parking

Radar/LiDAR

- Key components of Level 3+
 and autonomous vehicles
- Essential in night driving, conditions of rain and fog
- Example Use Cases:
 - Blind spot detection
 - Collision avoidance systems

Factory Automation

- Industrial standards & requirements similar to automotive
- Reduces the risk of injury, provides consistent quality, & minimizes waste
- Example Use Cases:
 - Industrial motor drives
 - Safety controllers

Automotive Applications Require Scalable NN Performance

High-end Vision Requirements on the Rise

Automotive Functional Safety

ISO 26262 Standard Focuses on Safety-Critical Components

- "Safety-Critical" systems must be designed to minimize risk of catastrophic failures and respond to failures in a predictable manner
- ICs in these systems must meet ISO 26262 functional safety requirements
- Automotive Safety Integrity Level (ASIL) designates risk potential, from QM (lowest) to D (highest)

Automotive ADAS Safety Trends

Application	Level/ASIL 2015	Level/ASIL 2024
Adaptive Cruise Control (ACC)	Level 1-2/ASIL-B	Level 2-3/ASIL-C/D
Blind Spot Detect (BSD)	Level 1-2/ASIL-B	Level 2-3/ASIL-C/D
Forward Collison Warning (FCWS)	Level 1-2/ASIL-B	Level 2-3/ASIL-C/D
Lane Departure System (LDWS)	Level 1-2/ASIL-B	Level 2-3/ASIL-C/D

Functional Safety Gains a Partner

Protection from Malicious Attacks ISO 21434 / SAE J3101

Fault Type	Definition	ISO Standard
Systematic Faults	Applicable to HW and SW, introduced through development	ISO 26262
Random (Permanent) HW Faults	Occurs unpredictably during the lifetime of the product Fault stays until removed or repaired	ISO 26262
Random (Transient) HW Faults/Soft Errors	Occurs unpredictably during the lifetime of the product Fault occurs once and subsequently disappears, e.g. bit flip in SRAM or logic due to alpha radiation	ISO 26262
Malicious Attack	Can occur unpredictably during the lifetime of a hardware element	ISO 21434 / SAE J3101

Safety & Security Go Hand-in-Hand ISO26262 and ISO21434

- Both standards provide a set of guidelines:
 - ISO26262 (FuSa): Achieve safety goals while developing automotive solutions
 - ISO/SAE 21434: Protection against cyberthreats
- Both processes start with detecting risks and threats, and finding a way to mitigate them
- As the automotive industry becomes increasingly reliant on software, vehicles need to be as cyber secure as they are safe

ADAS ICs Moving From Discrete to Integrated Safety/Security Solutions

Integrated ISO26262 & ISO21434 compliant safety/security manager lowers system costs, reduces power & area

Synopsys Leveraging a Culture of Safety

Unmatched Investment in Automotive Grade IP

	Synopsys Automotive IP		
Interface	 USB 2.0 & 3.0 / DisplayPort Ethernet TSN / QoS MIPI CSI-2/DSI & C/D-PHY; I3C PCI Express 3.0, 4.0 & 5.0; CXL 		
- Memory	 Embedded Memories, TCAMs LPDDR5/4/4X NVM 		
Processors	 ARC EV AI / ML Processors ARC EM & HS FuSa Processors ARC VPX Digital Signal Processors ARC SEM Security Processors 		
Security	 Hardware Security Modules (HSM) Encryption & Decryption Secure Boot and Access Control 		

- Safety a major distinction between Synopsys and others –
 reducing risk and accelerating qualification for automotive SoCs
- ISO 26262 ASIL B & D Ready IP developed and assessed specifically for random hardware faults; AEC Q100 tested, w/Automotive QMS
- Industry's 1st ISO 26262 ASIL D Compliant processor IP for random hardware faults and systematic development flow
- Synopsys' safety philosophy is to follow the letter and intent of ISO26262 – not just provide bare minimums

Synopsys Processors and Tools Used Industry-wide

Adopted by 9 out of 10 Semiconductor Vendors

- 90% of top vendors leveraging Synopsys processor IP and tools with dozens of wins in EU, NA, JP and China
- Industry's 1st ASIL D compliant processor IP for systematic development flow & random hardware faults

Synopsys[®]

ARC Functional Safety (FS) Processors

ISO 26262 ASIL Compliant Cores for Automotive Applications

• Safety-enhanced cores span the ARC portfolio to address broad range of automotive applications

SGS

ASIL D COMPLIANT

Functional Safety ISO 26262 www.sgs-tuev-saar.con

- Industry's First Processor IP Certified for Full ISO 26262
 ASIL D Compliance
- ARC MetaWare Development Toolkit for Safety speeds ISO 26262-compliant software development
- FuSa Software Stack ASIL certified embedded components for use in safety-critical applications
- Over 80 safety work products developed, accelerating customers' functional safety assessments

Synopsys "Safe and Secure" Architecture

Synopsys Safe & Secure Architecture

- Safety Manager (EM, HS) Monitors & manages system failures, real-time faults
- Vision Processing for ADAS (VPX / NPX) -Heterogeneous vector DSP + NN accelerator
- **DSP for Radar/LiDAR (VPX / EV) -**Floating point, linear algebra for greater accuracy
- **Real Time and Host Processors (HS)** Safety-enhanced multicore processors for real-time control and advanced automotive applications
- HSM (tRoot/SEM) Protects against malicious attacks, secure boot/updates
- FuSa S/W ASIL-D certified libraries, runtime, Software Test Libraries

Safety, Security Management & Real-Time Control

ARC EM Safety Processor, tRoot HSM, ARC HS4xFS Real-time Processor

Instruction / Data CCMs (ECC)			
ARC EM core (main)	Safety Monitor	ARC EM core (shadow)	
DSP System Bus	• (ECC)/	DSP Safety Bus	

EM22FS Safety Management Processor

- Dual-core lockstep implementation with hybrid mode support
- Dedicated safety monitor validates DCLS operation and collects SoC level error info
- ECC for closely coupled memories, MPU, user Programmable Watchdog Timers
- FuSa safety management S/W stack available

tRoot Hardware Security Module

- Scalable cryptography: custom instructions (CryptoPack) to crypto cores with side channel protection
- NIST-compliant TRNG
- Secure Instruction Controller with side channel protection for secure external memory access
- Software: secure applications SDK, crypto library, device drivers & reference designs

HS4xFS Safety Enhanced RT Controller

- Dual-issue, 10-stage pipeline processor, configurable in lockstep or hybrid modes
- Single-core and quad-core options (DCLS)
- Industry leading integrated H/W safety features
- 20% higher single core performance than Cortex-R52

ADAS Vision, Radar/Lidar and Application Processing

ARC VPX5FS DSP, NPX6FS NPU and HS6x Processor

Synop	osys Des	ignWa	are A	RC VI	PX5FS	6 Proce	essor	
ARCv2DSP ISA			ARConnect			Safety		
Scalar FPU	Vector E	Vector Execution Vector Floatin		ating Point	Execution	Features		
Scalar Unit	MPY1 MF	VALI (1,2,	Js 3)	VFPUA	VFPUB	VFFC	JTAG Real	
Instruction CCM	Instruction Cache	Data CCM	Data Cach	a Veo le	tor Load / S Gather / So	Store with catter	Time Trace	
VCCM				00.014				
Cache Coherency Unit				20 DMA				
Cluster Sh	nared Memory	A	(I Bus In	iterface		Safety B	us	

VPX5FS DSP

- Multicore vector DSP addresses ADAS sensors (LiDAR, RADAR), powertrain, sensor fusion, etc.
- SIMD/VLIW design for massive parallel processing
- Multiple vector FP engines for high precision results

NFAOFS Neural Frocessing Onit

- Addresses AI and vision applications: augmented reality, ADAS, surveillance, etc.
- 1 to 24 core scalable NPU up to 96K MACs executes graphs for object detection and scene segmentation up to 340 TOPS
- Automatic graph partitioning using MetaWare MX for improved performance, bandwidth, latency

ARC HS6x Host Processor

- ARCv3 64-bit multi-core processor
- Configurable as real-time and/or application processor
- Support for up to 12 CPU cores and up to 16 user hardware accelerators
- 35% lower power (uW/MHz) than Cortex-A65AE

ARC FS Safety Processors – Safety Hybrid Mode

Configurable for ASIL-D (DCLS) or Dual-Core Independent ASIL-B

Flexible architecture to allow customers to balance safety levels with performance requirements

Functional Safety Software / Tools Complement ARC FS Processors

Industry Leading Safety Management Solutions

ARC ISO26262 Certifications

ASIL D Compliance with SGS-TuV

MetaWare Compiler

FuSa C-runtime library

ARC EM22FS

ARC HS4xFS

SGS

AAR

ASIL D COMPLIANT

Functional Safety ISO 26262 www.sgs-tuev-saar.com

Synopsys Safety and Security Subsystem Reference

ARC. Processor Summit

tRoot HSM - Critical Security Management

- Efficiently manages secure boot and updates for tRoot and other processors
- Provides secure debug, key management, cryptography & authentication

SoC Safety Manager

- Responsible for SOC "safety" bring-up
- Boot-time (POST): LBIST, MBIST, IP BIST
- Periodic test management
- Monitors and executes Safety escalations
- Error injection for Safety Mechanism Testing

Safety Bus

- Safety Manager informed of errors via dedicated Safety Bus
- Ability to monitor other ASIL cores and IP
- Interconnect to SHS Architecture

ASIL Certified Processors and IP

- Lockstep-capable processors with native Safety Bus interface support ASIL B and D
- Safety certified interface, test & peripheral IP

Hierarchical Safety Management

- STAR Memory (SMS) & STAR Hierarchical (SHS) Systems
- Safety wrappers connect ECC data & address monitors

Industry Leading ARC Functional Safety Processors

Minimal Risk & Design Effort Solution for Automotive SoCs

- Hardware: Industry's First Processor IP Certified for Full ISO 26262 ASIL D Compliance
 - ARC Safety Processors comply with the latest version of the automotive standard, ISO26262:2018
 - ARC Safety Processors meet **both** stringent **random** hardware fault detection and **systematic** functional safety development requirements
- Software: Functional Safety Software Stack provides Industry Leading Safety Management & Development Solutions
- **Tool Chain:** ASIL D Compliant ARC MetaWare Toolkit for Safety speeds development of safety critical software
- Work Products: Over 80 work products developed. Common safety process flow and review across all Synopsys' automotive IP

Thank You

Synopsys® Silicon to Software[™]