

How Transformers are Changing the Direction of Deep Learning Architectures

Tom Michiels, System Architect Synopsys ARC[®] Processor Summit 2022

CNNs Have Dominated Many Vision Tasks Since 2012

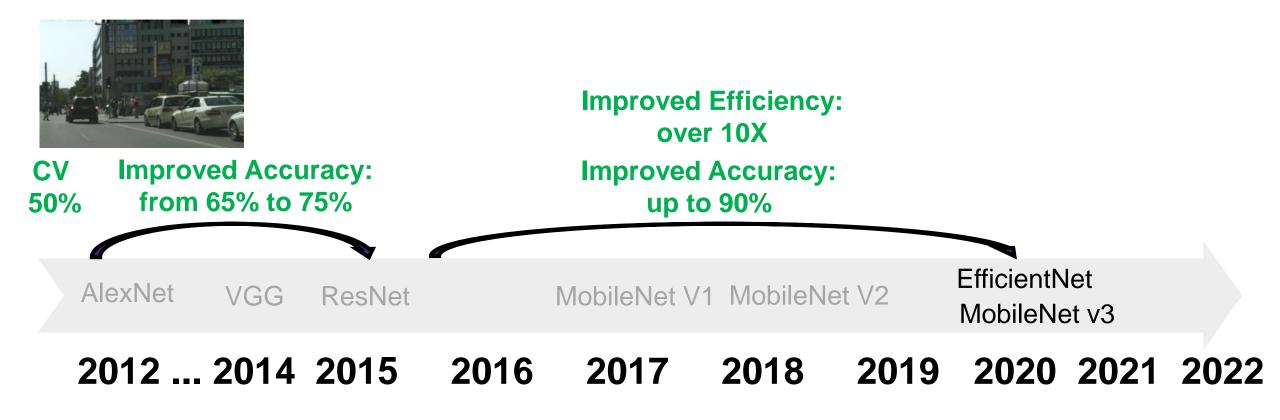
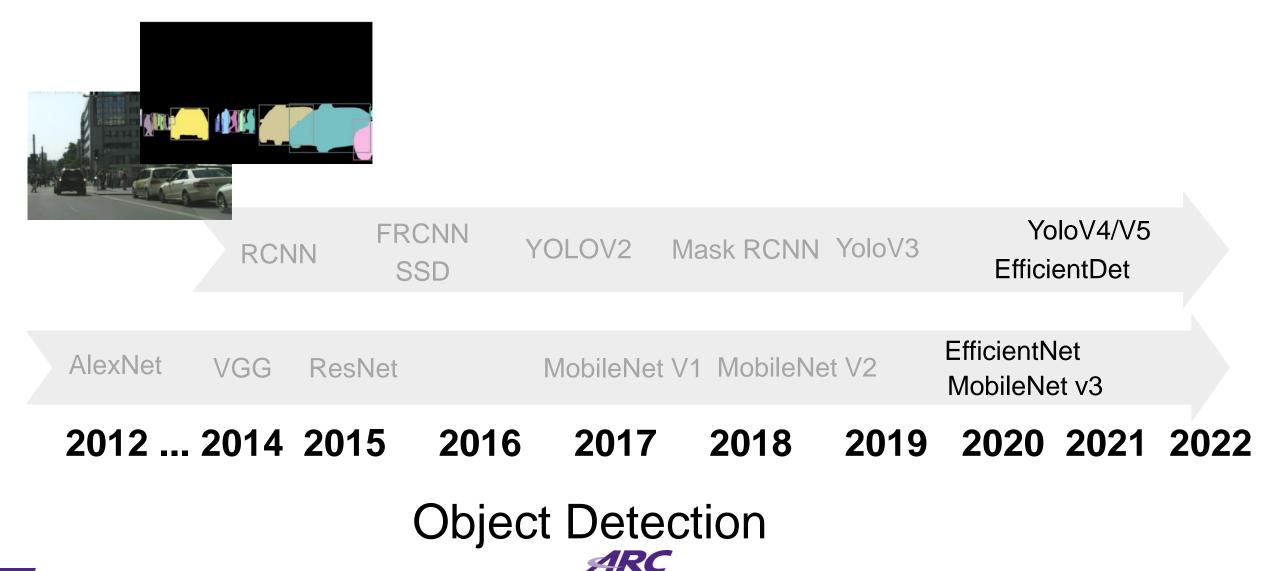


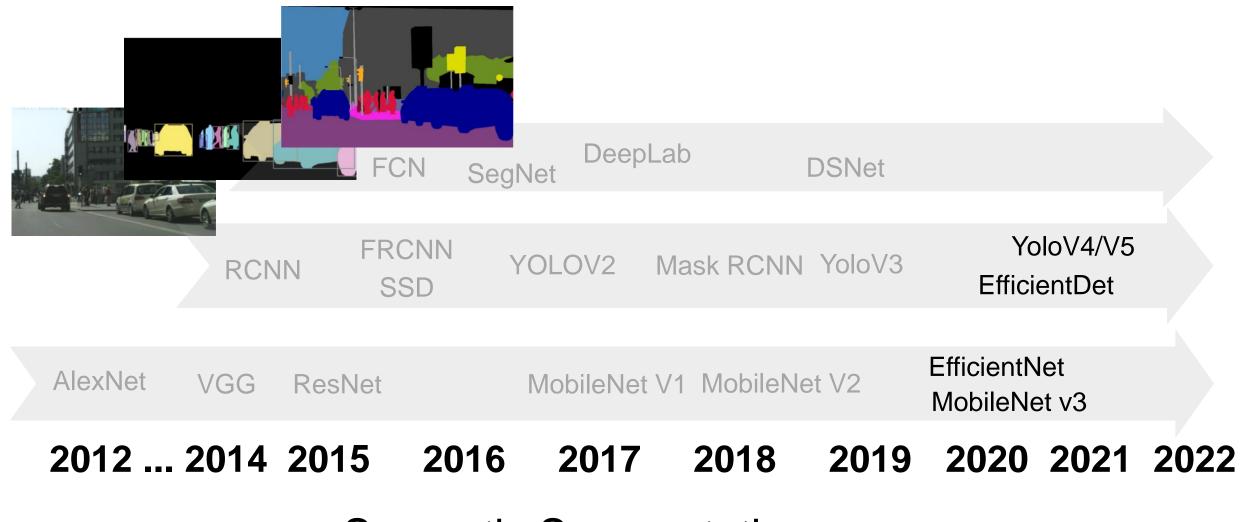
Image Classification

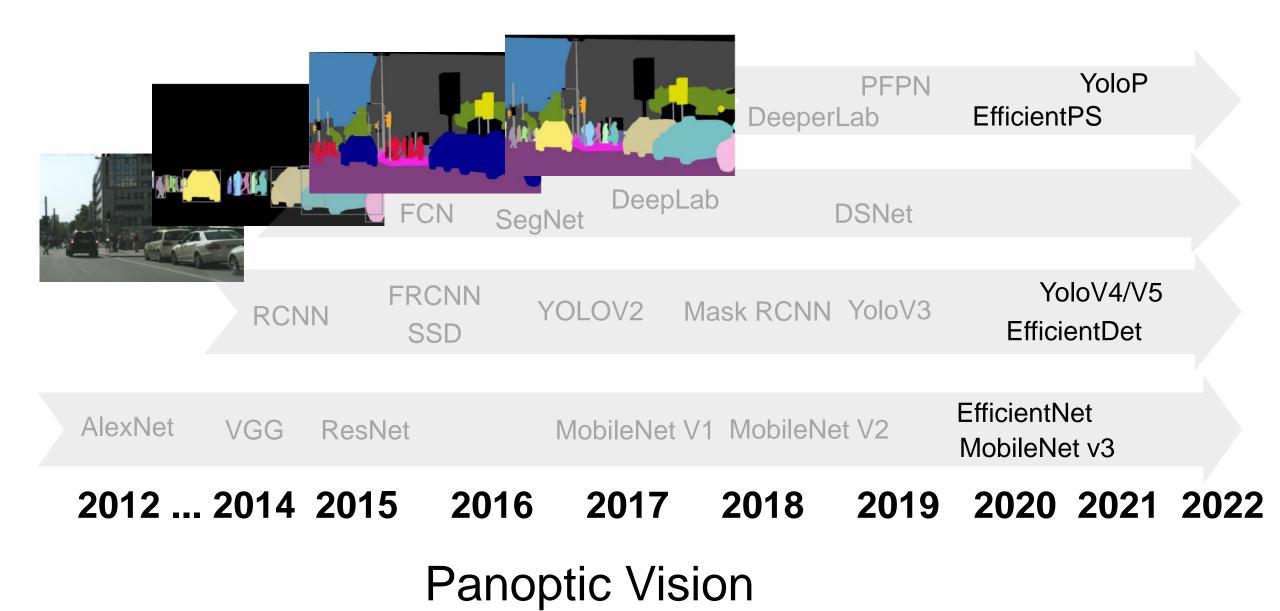
CNNs Have Dominated Many Vision Tasks Since 2012



Processor Summi

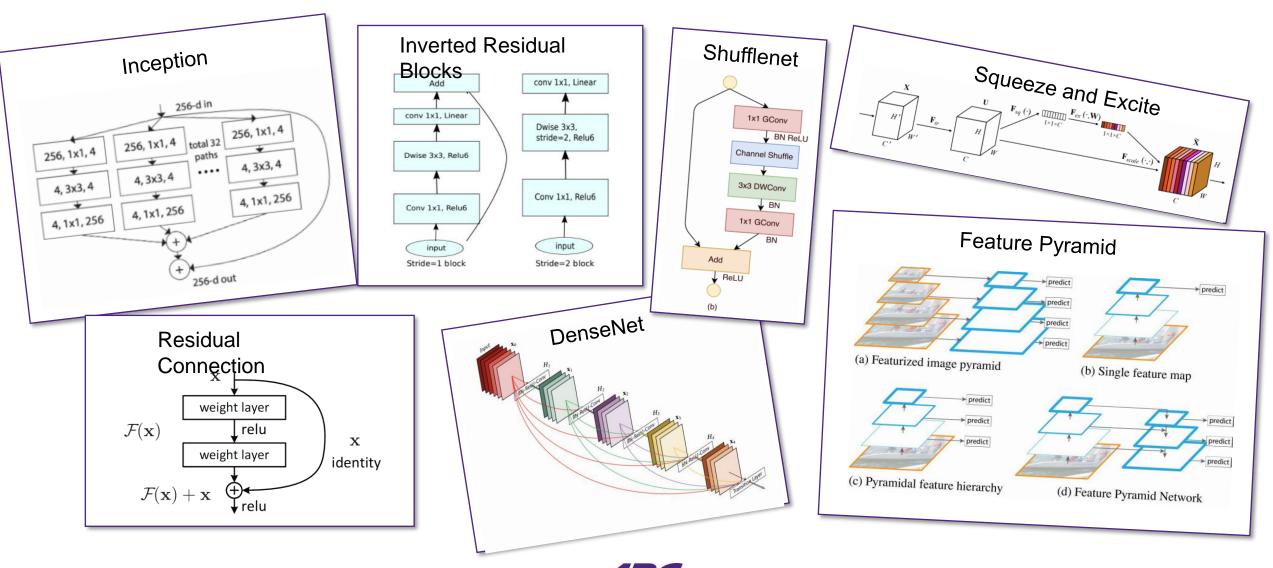
CNNs Have Dominated Many Vision Tasks Since 2012





Processor Summit

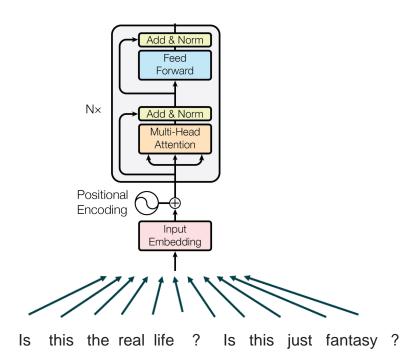
A Decade of CNN Development... 90.0% Accuracy, 2021



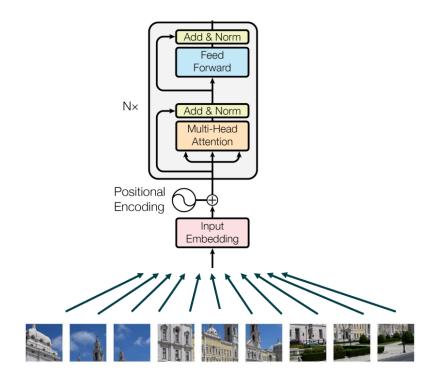
The Appearance of Transformers

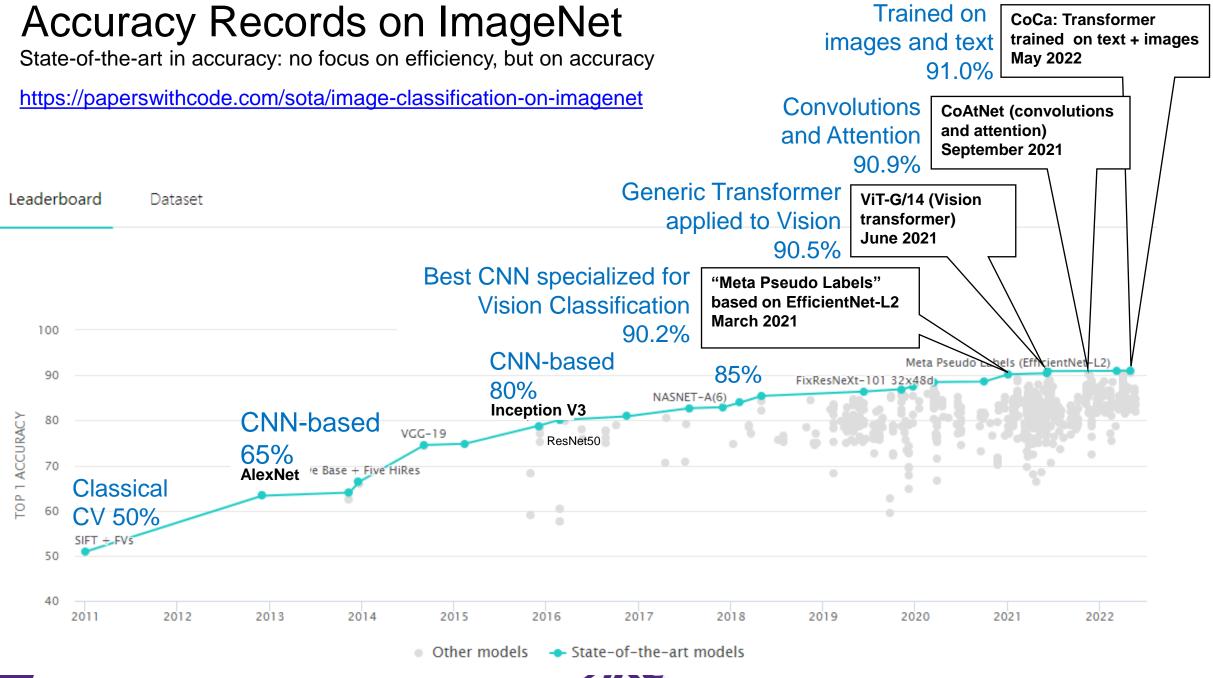
90.5% Accuracy, 2021 91.0% Accuracy, 2022

Transformer, a model designed for natural language processing

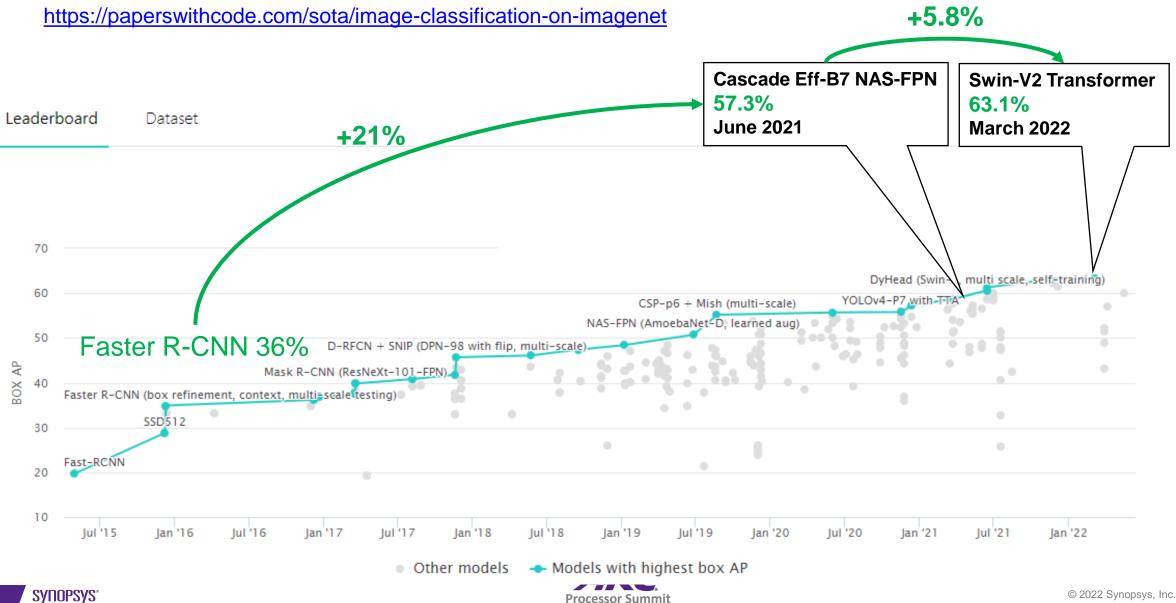


... without any modifications applied to image patches, beats the highly specialized CNNs in accuracy





Object Detection – COCO test-dev, box AP



Transformers Compute Requirements and Model Size

- Compute requirements for early Transformer models are much higher
 - Performance comparison (for same NPU configuration)

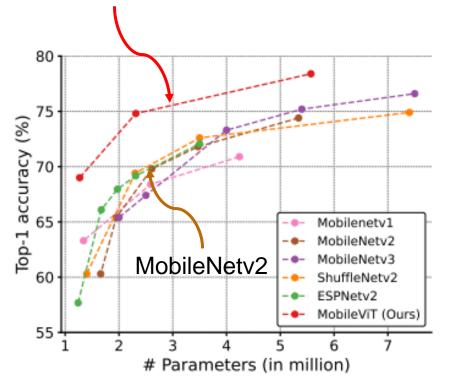
NN Model	Image size	Top 1 Accuracy	Relative GOPS	Relative Frames/sec
MobileNetv2	224x224	69.8%	1X	32X
ViT_B_16	224x224	84.0%	58X	1X

- All the state-of-the-art models (CNN and Transformers) are huge
 - Approx. 2G parameters
 - Impractical for use in embedded applications

Mobile ViT: Small Mobile (Paper by Apple, March 2022)

https://arxiv.org/pdf/2110.02178.pdf

MobileVit is a small Transformer + Convolution model that beats convolutions of similar size in accuracy



Model	# Params. 🌡	Top-1 🁚	
MobileNetv1	2.6 M	68.4	
MobileNetv2	2.6 M	69.8	
MobileNetv3	2.5 M	67.4	
ShuffleNetv2	2.3 M	69.4) + 5% Accuracy
ESPNetv2	2.3 M	69.2	-
MobileViT-XS (Ours)	2.3 M	74.8	

Comparison with light-weight CNNs with similar model-size

Mobile ViT: Small Mobile (Paper by Apple, March 2022)

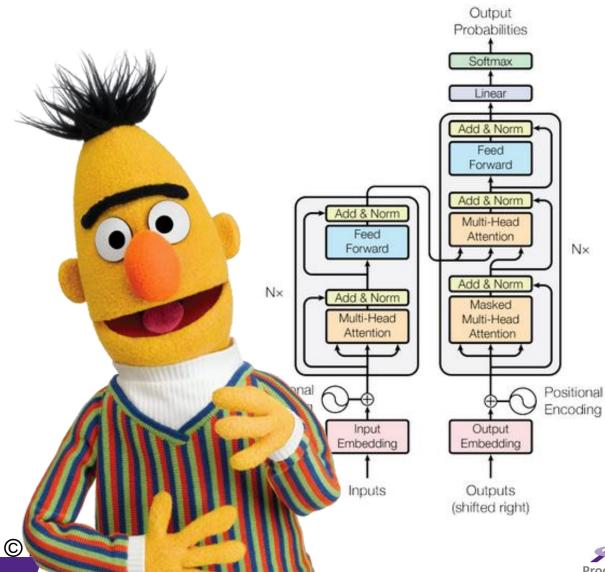
https://arxiv.org/pdf/2110.02178.pdf

Model	# Params ↓	FLOPs ↓	Top-1 ↑ _	Inference Time (ms)		
				iPhone12 - CPU	iPhone12 - Neural Engine	
MobileNetv2 DeIT PiT MobileViT (Ours)	3.5 M 5.7 M 4.9 M 2.3 M	0.3 G 1.3 G 0.7 G 0.7 G	73.3 72.2 73.0 74.8	7.50 ms 28.15 ms 24.03 ms 17.86 ms	0.92 ms 10.99 ms 10.56 ms 7.28 ms	• CPU/NNE = 8.1X • CPU/NNE = 2.5X
	0.7X Model Size	2.3X FLOPs	+1.5% Accuracy	2.4X Time	7.9X Time	

- Observations in Paper
 - On embedded devices (iPhone) MobileViT is slower than CNN based methods
 - Because the AI accelerator on iPhone is not as optimized for Transformers as it is for CNN's
 - The authors expect that future AI accelerators will better support Transformers

The Structure of Attention and Transformers

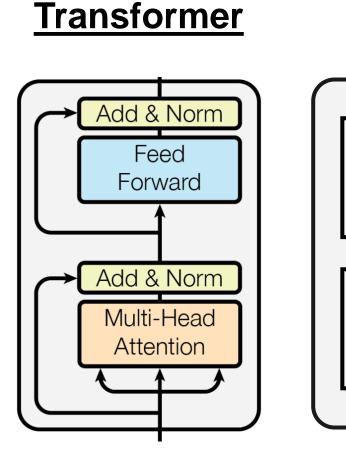
Bert and Transformers

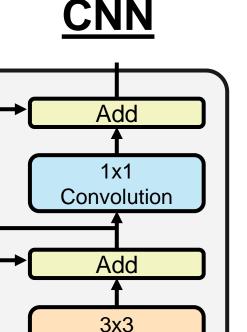


- Attention is all you need!(*)
- A Transformer is a deep learning model that uses Attention mechanism
- Transformers were primarily used for Natural Language Processing
 - Translation
 - Question Answering
 - Conversational AI
- Successful training of huge transformers
 - MTM, GPT-3, T5, ALBERT, RoBERTa, T5, Switch
- Transformers are successfully applied in other application domains with promising results for embedded use

(*) https://arxiv.org/abs/1706.03762

Convolutions, Feed Forward, and Multi-Head Attention



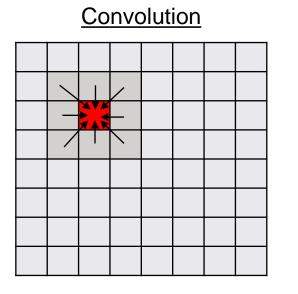


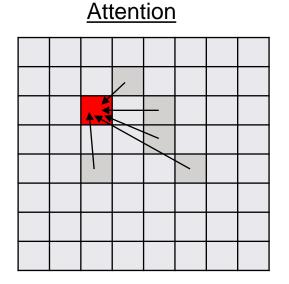
Convolution

- The Feed Forward layer of the Transformer is identical to a 1x1 Convolution
- In this part of the model, no information is flowing between tokens/pixels
- Multi-Head Attention and 3x3 Convolution layers are the layers responsible for mixing information between tokens/pixels

Convolutions as Hard-Coded Attention

Both Convolution and Attention Networks mix in features of other tokens/pixels

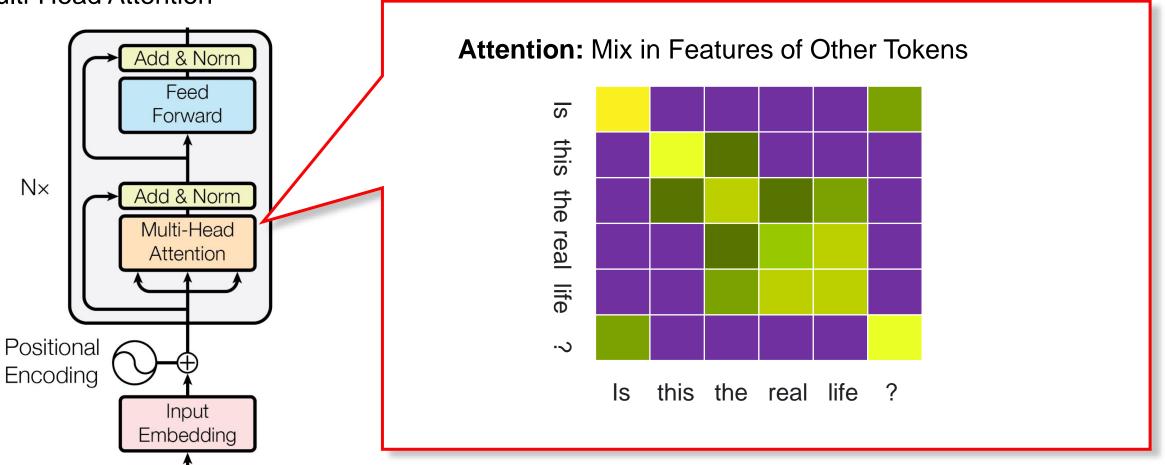




Convolutions mix in features from tokens based on fixed spatial location Attention mix in features from tokens based on learned attention

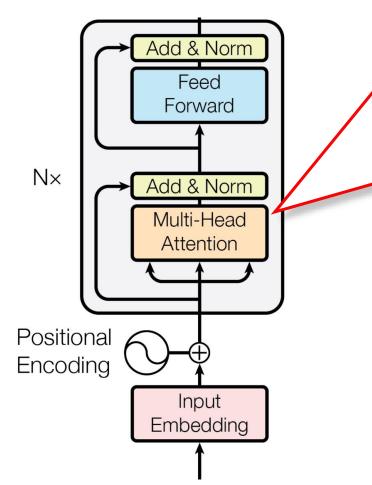
The Structure of a Transformer: Attention

Multi-Head Attention

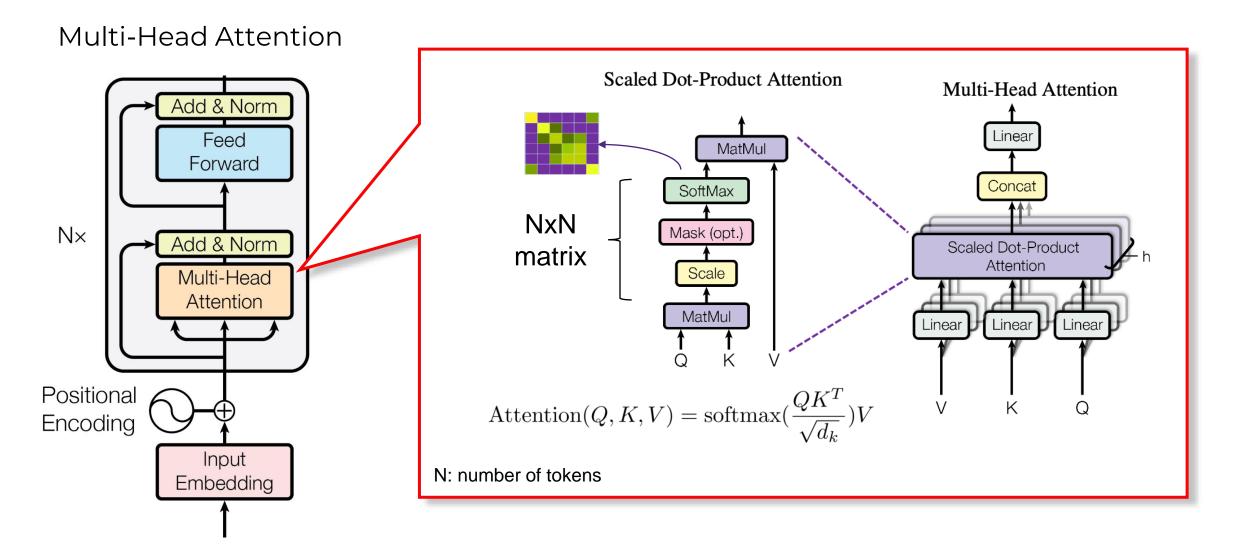


The Structure of a Transformer: Attention

Multi-Head Attention



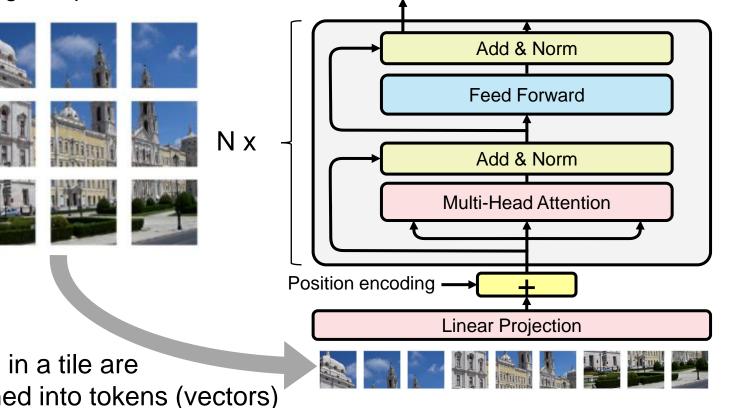
The Structure of a Transformer: Attention



Vision Transformers (ViT/L16 or ViT-G/14)

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale(*)

Image is split into tiles



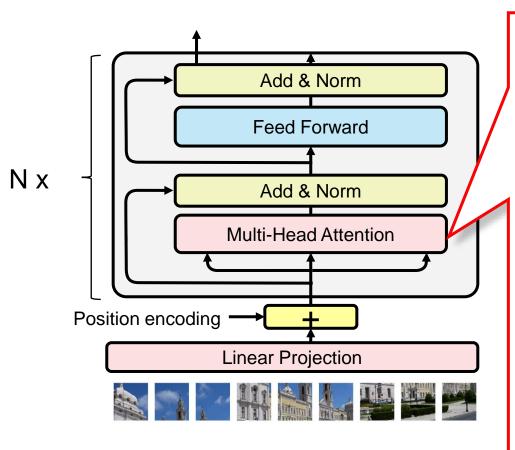
Vision Transformers are at the time of publication **best-known method for image classification**

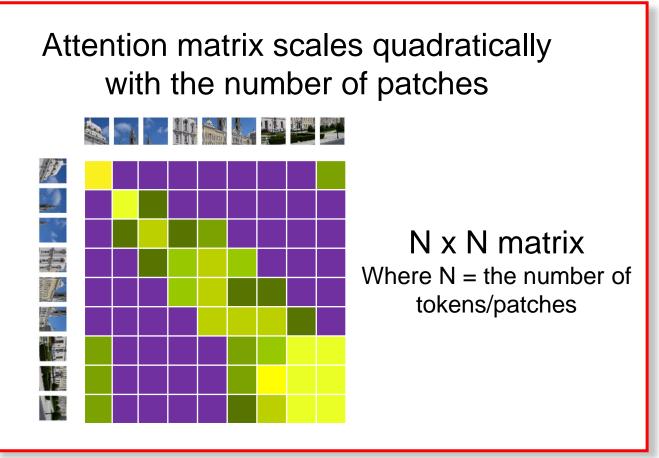
They are beating convolutional neural networks in **accuracy** and **training time**, but **not in inference time**.

Pixels in a tile are flattened into tokens (vectors) that feed in the transformer

synopsys[®]

Vision Transformer \rightarrow Increasing Resolution





Swin Transformers

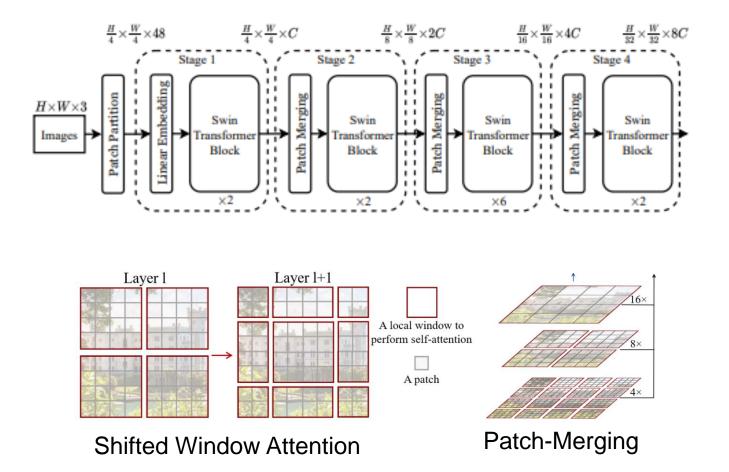
Hierarchical Vision Transformer using Shifted Windows (*)

Adaptation makes Transformers scale for larger images:

- 1. Shifted Window Attention
- 2. Patch-Merging

State of the Art for

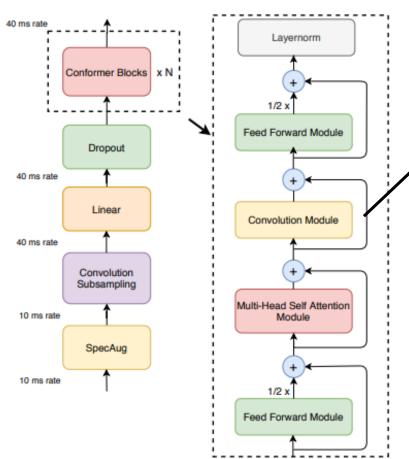
- Object Detection (COCO)
- Semantic Segmentation (ADE20K)



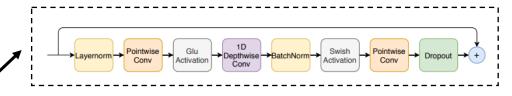
Other Application Domains: Speech Recognition, Action Recognition

Speech Recognition

Conformer: Convolution-augmented Transformer for Speech Recognition (*)



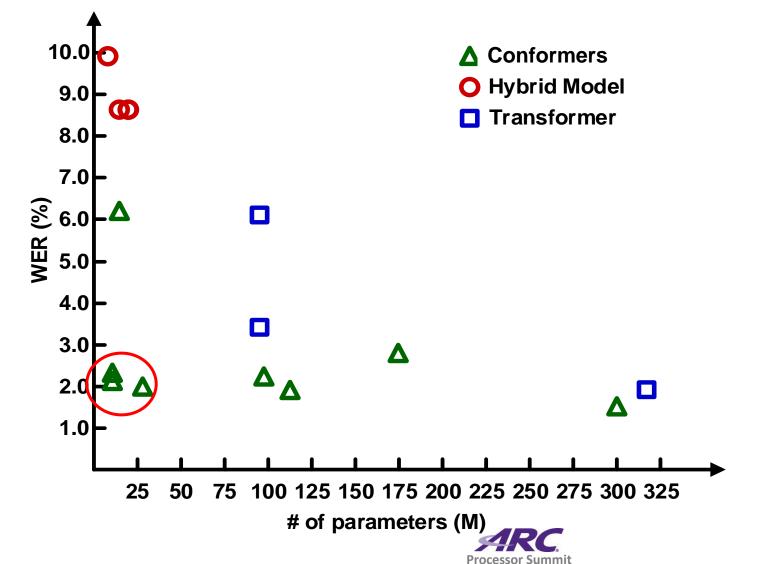
Conformers are Transformer with and additional Convolution Module
The convolution module contains a pointwise and a depthwise (1D, size=31) convolution:



- Compared to RNN, LSTM, DW-Conv and Transformers, Conformers give excellent accuracy / size ratio
- Best known methods for speech recognition (LibriSpeech) are based on Conformers

Speech Recognition – contd.

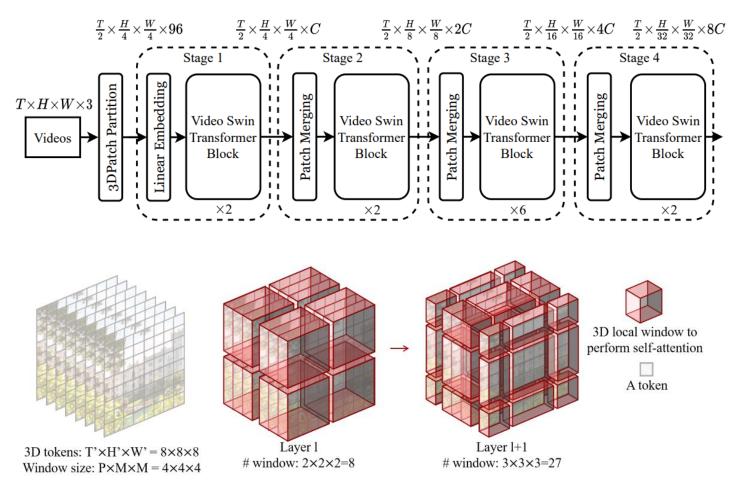
Compared to RNN, LSTM, DW-Conv and Transformers, Conformers give excellent accuracy / size ratio

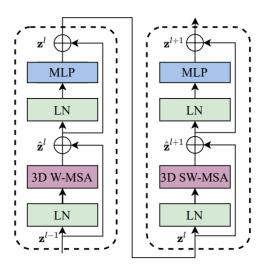


https://arxiv.org/abs/2005.08100

Action Classification with Transformers

Video Swin Transformer



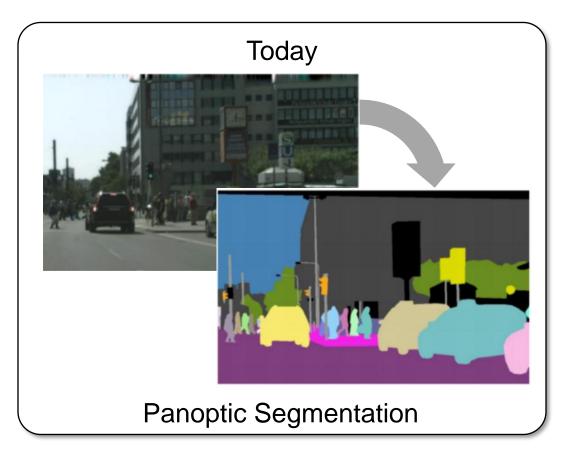


Video Swin Transformers extend the (shifted) window to three dimensions (2D spatial + time)

Today's state of the art on Kinetics-400 and Kinetics-600

Why Attention and Transformers are Here to Stay for Vision

Visual Perception beyond Segmentation & Object Detection

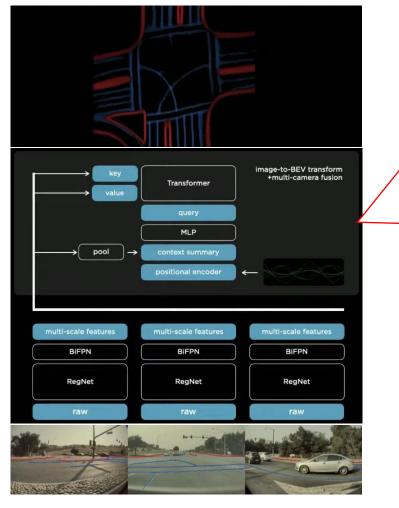


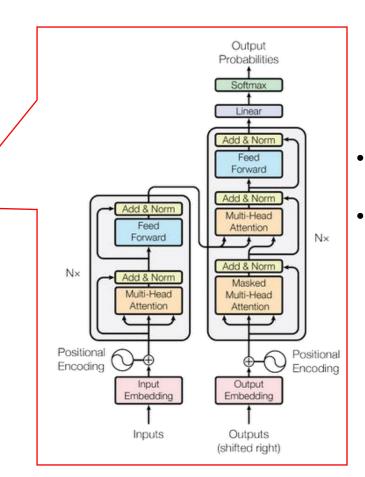
What is happening in this scene?

Future applications like security cameras, personal assistants, storage retrieval,.... require a deeper understanding of the world → Merging NLP and Vision using the same knowledge representation backend

Using Transformers Make Predictions in Vector Space

Tesla Al Day, Aug-2021





- Convolutional neural network extract features for every camera
- A transformer is used to:
 - Fuse multiple cameras
 - Make predictions directly in bird-eye-view vector space

Source: Tesla AI Day, 21-Aug-2021: https://www.youtube.com/watch?v=fdtC1AxFNkk

Why Transformers are Here to Stay in Vision

- Attention based networks outperform CNN-only networks on accuracy
 - Highest accuracy required for high-end applications
 - Initially at a high compute cost
- Models that combine Vision Transformers with Convolutions are more efficient at inference
 - Examples: MobileViT^(*), CoAtNet^(**)
- Full visual perception requires knowledge that may not easily be acquired by vision only
 - Multi-modal learning required for a deeper understanding of visual information
- Application integrating multiple sensors benefit from attention-based networks

Thank You