

Highly efficient programing environment for handling Al workloads

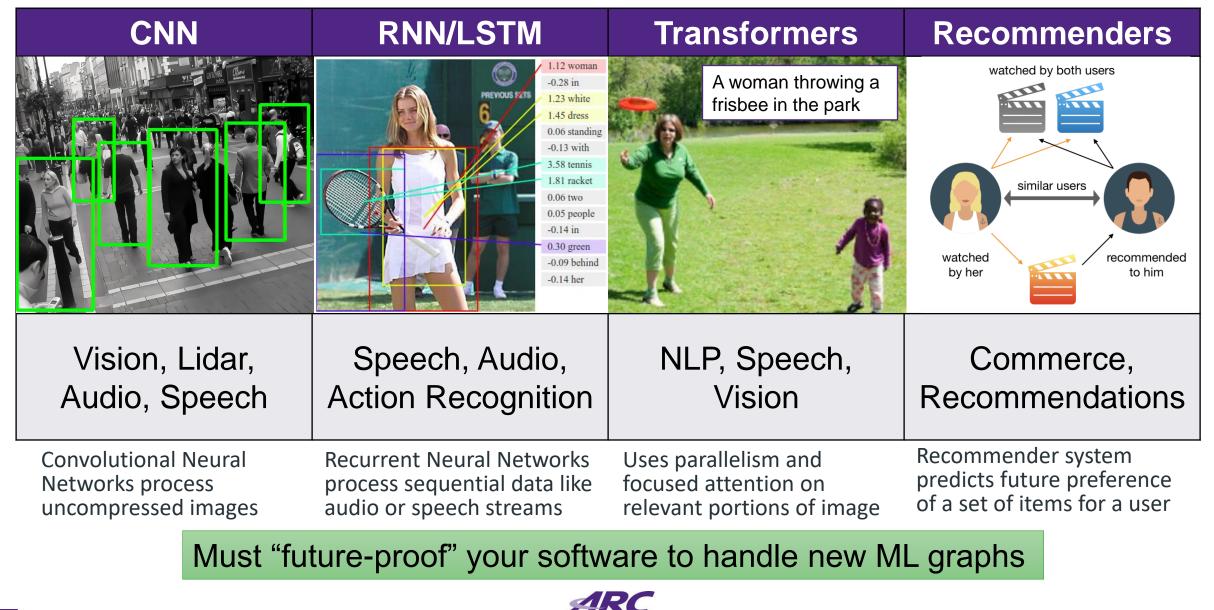
Tom Michiels, System Architect Synopsys ARC[®] Processor Summit 2022

Agenda

- The AI Programming Challenge
- Optimizations For Programming AI-Enabled SoCs
- Quantifying The Benefits

The AI Programing Challenge

Popular & Emerging Neural Networks Are Still Evolving



© 2022 Synopsys, Inc.

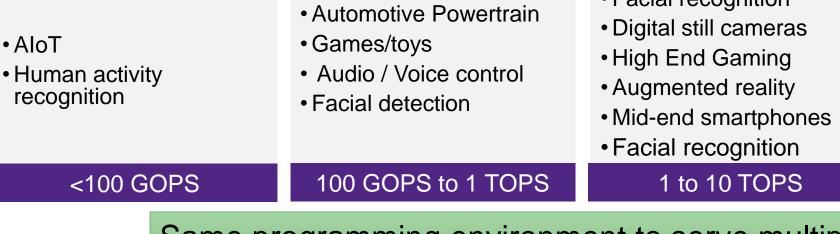
AI Software Runs On a Spectrum Of Hardware Types

CPU, GPU, DSPs, NPUs, AI Accelerators...

Hardware	Performance	Area Efficiency	Power Efficiency	Flexibility	Typical Programming Model
CPU	*	*	*	****	C/C++ code
GPU	****	*	*	****	OpenCL or CUDA
FPGA	**	***	*	***	Vendor Specific
DSP	***	***	***	***	C/C++ or OpenCL C
NPU	****	****	****	***	Vendor Specific
Accelerator	***	****	****	**	Hardwired or Special SDK

Ideally, your NN's will take advantage of any AI-enabled hardware

Wide Variety Of Performance For AI Edge Devices



Robotics / Drones

- Driver monitoring system
- Surveillance
- Facial recognition

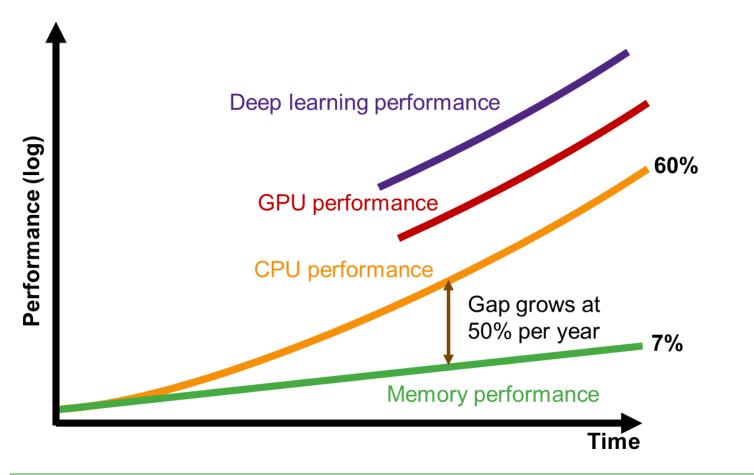
- ADAS Front Cameras
- ADAS LiDAR/Radar
- High end surveillance
- High-end smartphones
- DTV
- HPC
- Microservers (inference)
- Data center (inference)

10 to 1000+ TOPS

Same programming environment to serve multiple domains

AloT

Deep Learning Performance Outpacing Memory



- Moore's Law: CPU performance outpacing memory access speed
- GPUs initiated Deep Learning in 2012, widening the gap
- Deep Learning accelerators outpacing GPUs
- Goal: reduce data movement
 - Innovative heterogeneous memory architectures required
 - From on-chip memory compilers to high bandwidth HBM2

Limited memory bandwidth requires optimized data movements

Competing Machine Learning Frameworks

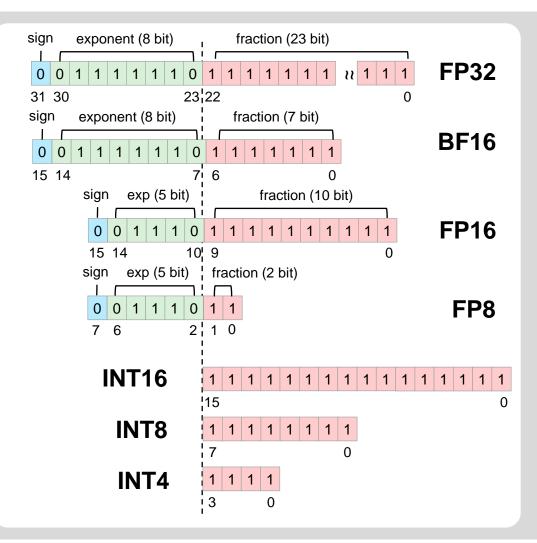
Lack of Programming Model Standardization for AI Algorithms

Programming model should support all popular frameworks

5 Optimizations For Programming AI-Enabled SOCs

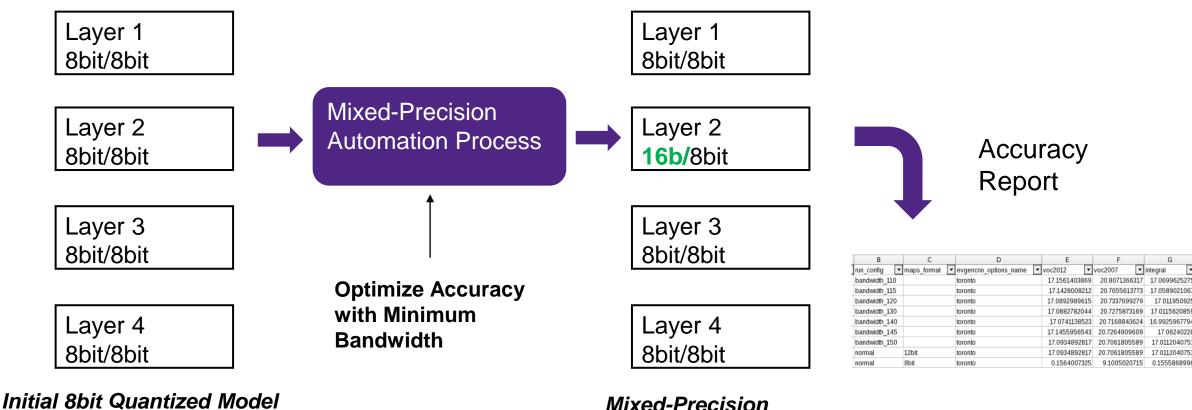
- 1. Quantization
- 2. Multi-level Layer Fusion and Multi-level Tiling
- 3. Feature Map Compression/Decompression
- 4. Structured Sparsity
- 5. Featuremap partitioning

NN Applications Use Wide Range Of Data Representations



- FP32 typical format used in GPUs for NN model training
- FP16 & BF16 are NOT needed for accuracy over INT8/16 – they make the transition from GPU easier, avoids having to retrain models
- FP8 has more traction for training than inference
- **INT16** provides accuracy 'insurance' for radar and super resolution (at reduced performance)
- INT8 standard for neural network object detection
- **INT4** can save bandwidth; not very popular yet

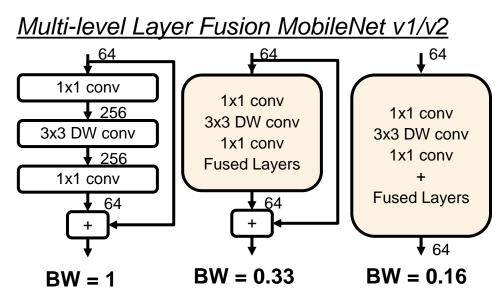
Mixed Precision Quantization Enables Optimized Accuracy with Minimum Bandwidth Impact

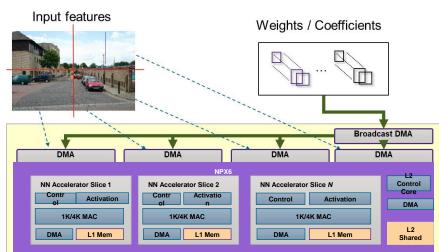


<u>Mixed-Precision</u> Quantized Model

Techniques for Minimizes Bandwidth Requirements

- Multi-level Layer Fusion
 - Merging multiple folded layers into single primitives reduces feature map bandwidth
 - Merged layers can be fused into layers groups and tiled, taking advantage of L1 and L2 memories
- Coefficient Pruning and Compression
 - Coefficients with a zero value are skipped/counted, a compressed coefficient bitstream is created offline
 - Compression ratio can be increased through pruning and retraining
- Feature Map Compression
 - Lossless runtime compression and decompression of feature maps to external memory
 - Approx. 40% feature-map bandwidth reduction, exploiting sparsity
- Layer, Frame based and Feature Map Partitioning with DMA Broadcasting
 - Broadcast of common data across slices to minimize bandwidth of coefficients and feature-maps loading



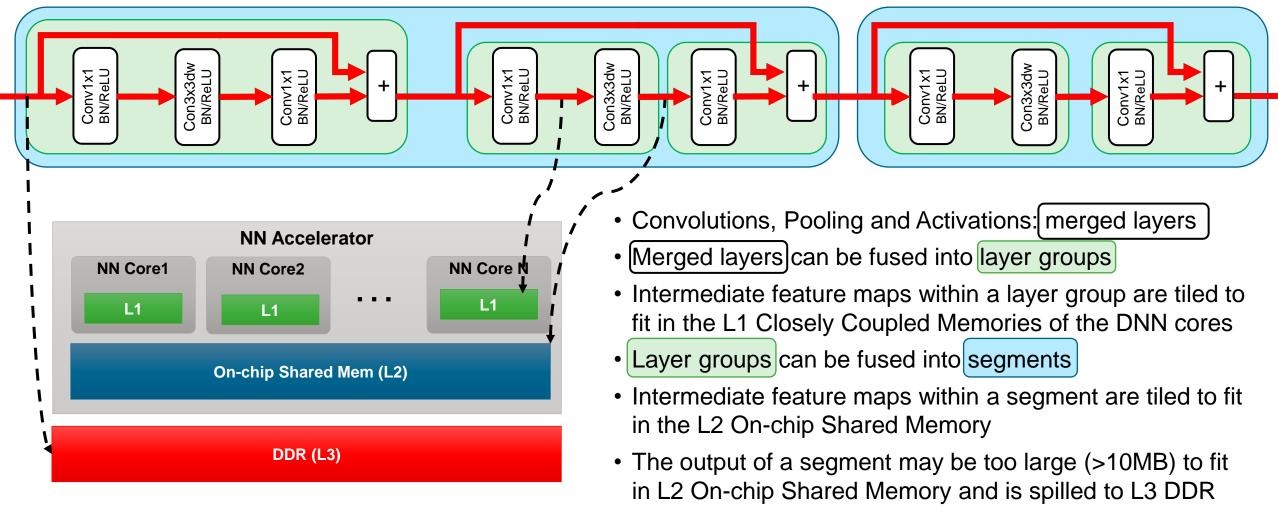


Feature Map Partitioning / DMA Broadcasting

Synopsys®

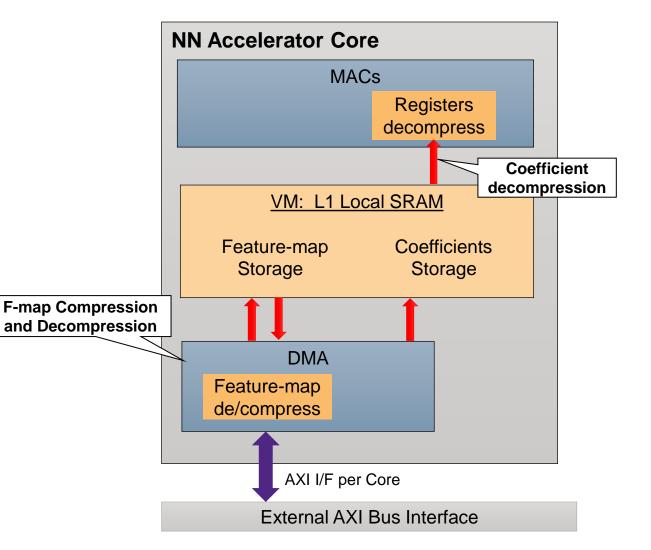
Advanced Data Bandwidth Reduction Techniques

Multi-level Layer Fusion and Multi-level Tiling



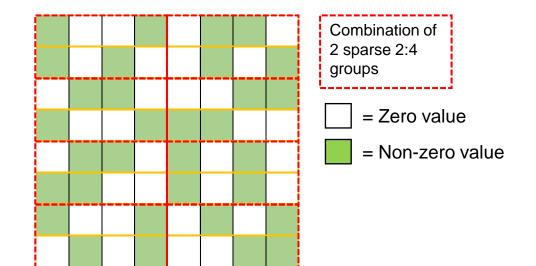
Data Compression/Decompression

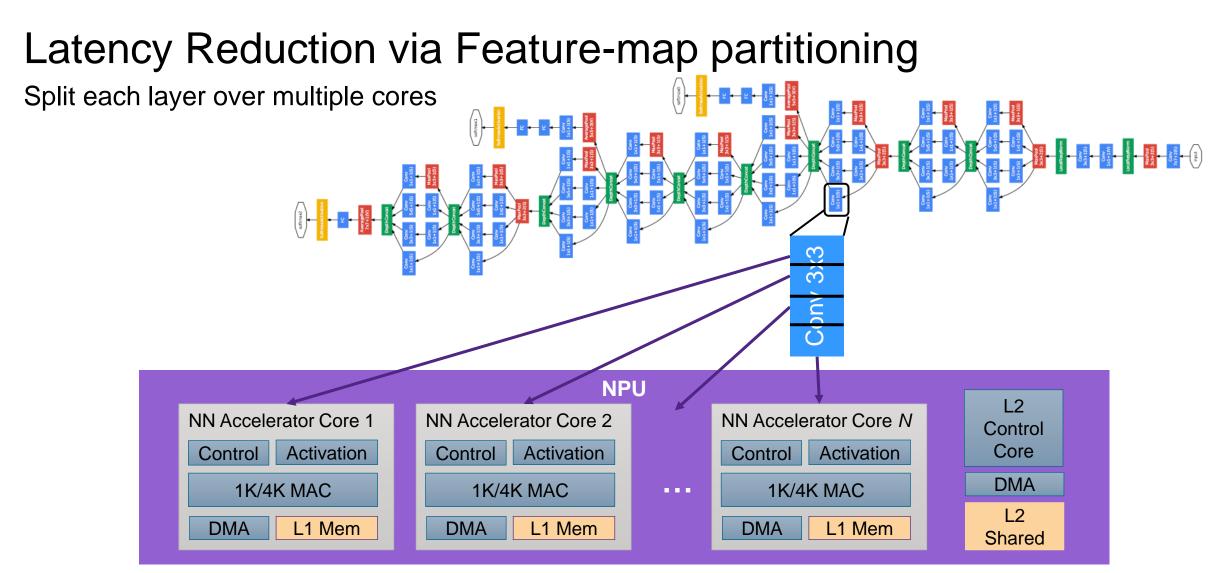
- Coefficient Pruning
 - Coefficients with a zero value are skipped/counted
 - Decompression done between local VM memory and NN datapath registers
 - Offline coefficient pruning (with retraining) can increase proportion of zero coefficients
 - Support of structured and unstructured sparsity
- Feature map compression/decompression
 - Runtime compression and decompression
 - NN core DMA supports HW compression mode
 - Bandwidth reduction of 40~45% measured typically



Structured Sparsity Can Improve Performance 2X

- Sparsity takes advantage of a matrix of numbers that includes many zeros or values that will not significantly impact a calculation
- Can exploits sparsity in coefficients
 - Flexible use of sparsity in coefficient vectors in channel dimension
 - Effective speedup of 1.4X~1.8X with almost no accuracy loss
- Doubles the effective MACs on applicable layers
- Requires pruning and retraining
 - No accuracy loss for key model families:
 e.g. ResNet, ResNext, Densenet, <u>Bert, GNMT</u>
 - Other models may have accuracy vs. performance tradeoffs





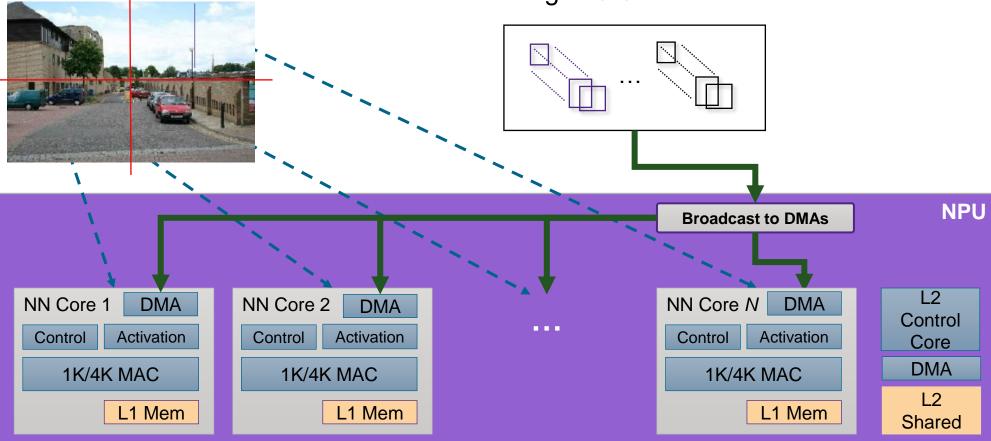
Processor Summit

- Higher throughput up to *N*X
- Lower latency up to *NX* due to parallel processing of a layer
- Significant bandwidth reduction (via DMA broadcasting)

Feature-map partitioning – contd.

Spatial partitioning: Reuse weights across cores through a broadcast DMA

Input features

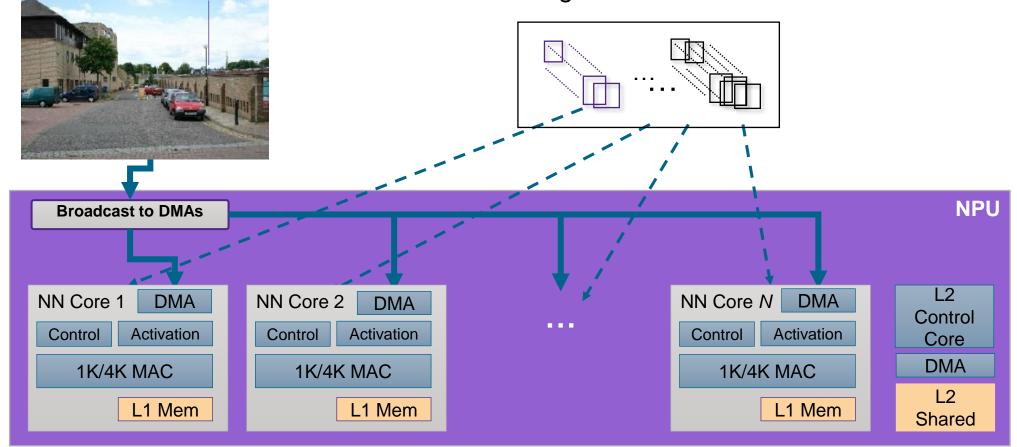


Weights / Coefficients

Feature-map partitioning – contd.

Channel partitioning: Reuse features across cores through a broadcast DMA

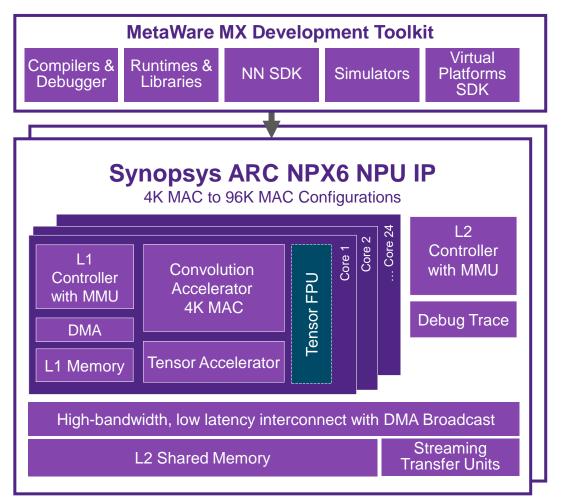
Input features



Weights / Coefficients

Quantifying the Benefits

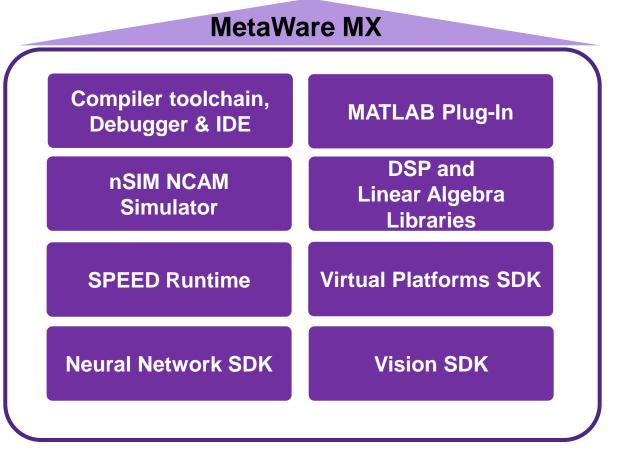
Synopsys Introduces ARC NPX6 NPU and MetaWare MX



- Scalable NPX6 architecture
 - 1 to 24 core NPU up to 96K MACS (440 TOPS*)
 - Multi-NPU support (up to eight for 3500 TOPS*)
- Trusted software tools scale with the architecture
- Convolution accelerator MAC utilization improvements with emphasis on modern network structures
- Generic Tensor accelerator Flexible Activation & support of Tensor Operator Set Architecture (TOSA)
- Memory Hierarchy high bandwidth L1 and L2 memories
- DMA broadcast lowers external memory bandwidth requirements and improves latency

* 1.3 GHz,5nm FFC worst case conditions using sparse EDSR model

Modular Toolkit Supports Control, DSP, Vision and ML Software Development



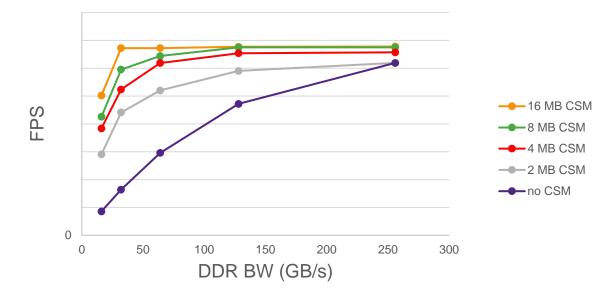
DesignWare® ARC® MetaWare MX Development Toolkit

- Integrated toolkit provides optimizing compilers, debugger, libraries and a simulator for development on ARC processors
- Includes Vector DSP and Linear Algebra Libraries (BLAS/LAPACK) and MATLAB Plug-In for Model-Based Design Environment
- MetaWare Neural Network SDK for enabling and optimizing Machine Learning and inference applications
- Includes simulation platforms for early software development and architectural exploration with MetaWare Virtual Platforms SDK
- Development of Computer Vision for pre- & post-processing eased with MetaWare Vision SDK

Benchmark Performance vs. L2 CSM size and DDR Bandwidth

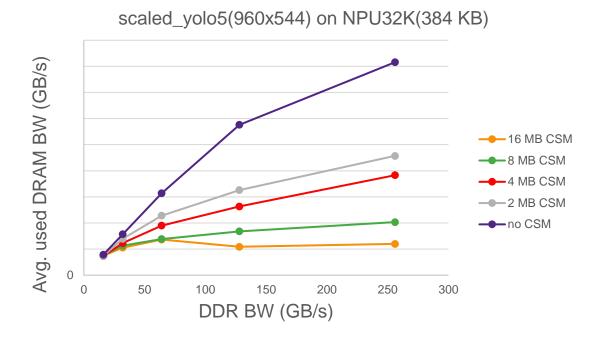
Result for selected NPX6-32K config – without structured sparsity

- NPX6 configuration: 8 NN cores * 4096 MACs per core
- NN core internal memory (L1): 384 KB per NN core
- Cluster Shared Memory (L2): 0 to 16 MB



scaled_yolo5(960x544) on NPU32K(384 KB)

- Ext. DRAM bandwidth (L3): 16, 32, 64, 128, 256 GB/s
- 8 bit data

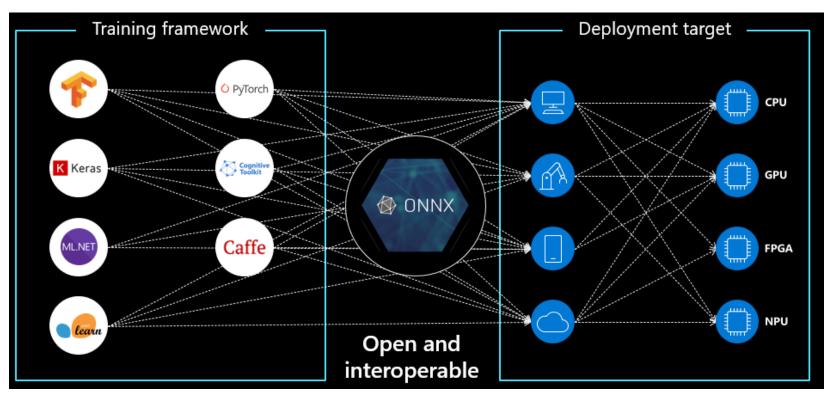


Performance Gains Obtained with Structured Sparsity

	NPX6-4K	NPX6-16K	NPX6-64K
Graph	% FPS improvement With Structured Sparsity	% FPS improvement With Structured Sparsity	% FPS improvement With Structured Sparsity
Inception v3	151%	142%	124%
Inception v3 FHD	148%	148%	148%
ResNet-50 v1.5	146%	147%	128%
ResNet-50 v1.5 FHD	142%	147%	147%
MobileNet v2	124%	133%	114%
MobileNet v2 FHD	120%	121%	117%
Yolo v3	152%	171%	165%
Yolo v3 FHD	165%	164%	168%
SSD-ResNet34	167%	171%	171%
SSD-MobileNet	151%	138%	115%
DeepLab v3	127%	129%	128%
EDSR	200%	191%	190%
SRGAN	176%	173%	171%
BERT_large	128%	135%	147%
BERT_large (batch=4)	128%	163%	166%
Vit_B_16	144%	128%	154%
Vit_L_16	132%	145%	149%
Vit_H_16	129%	145%	144%
swin_tiny	148%	148%	134%
swin_small	156%	158%	136%
swin_base	153%	163%	143%

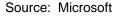
Open Neural Network Exchange

The open standard for machine learning interoperability

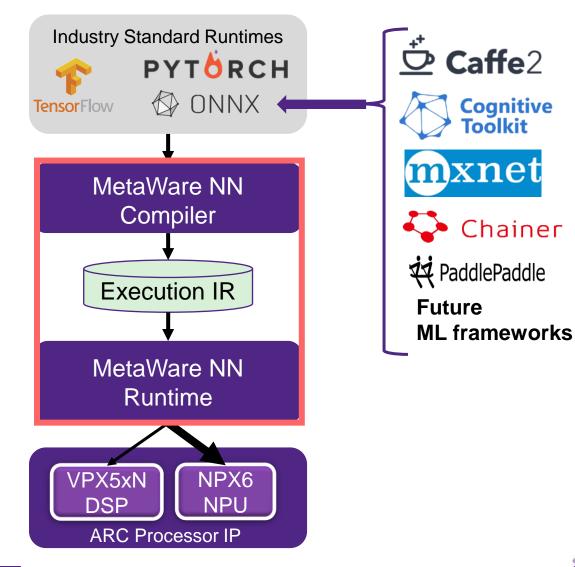


 Helps solve the challenge of hardware dependency related to AI models

- Open format to represent both deep learning and traditional models
- Defines a common set of operators and file format
- AI developers can use models with a variety of frameworks, tools, runtimes, and compilers
- Enables deploying same AI models to multiple HW-accelerated targets



Support for Different Programming Frameworks



- MetaWare NN Compiler integrates with standard frameworks
- Automatic mapping to NPX6 and VPX5 vector DSP with no manual optimization required
 - User-driven optimization options:
 e.g. Latency, throughput, bandwidth
- Generated code can run on multiple development platforms
 - Fast Performance Models (FPM)
 - Zebu H/W Emulator
 - HAPS FPGA board

State-Of-The-Art System Level Modeling And Analysis

Architecture Design

Software Development

Power profiling

Benchmarking & Profiling

Fast Performance Model

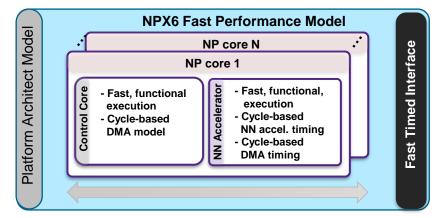
- Fast cycle-based Performance Model of NPX6 (and VPX5 cores)
- Integrated Platform Architect simulation environments
- Virtualizer Virtual Prototyping
 - VDK (Virtualizer development Kit for early Software Development Platform)

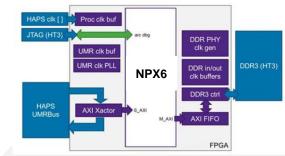
ZeBu Emulation

- Accurate performance and power modeling

HAPS Prototyping

 NPX6 mapped to HAPS board provides cycle accurate performance for benchmarking and software development





- AI Programming is a challenge amid evolving Neural Networks, absence of a standard programing model and the wide spectrum of HW types. A key challenges is the limited memory bandwidth
- Synopsys advanced optimizations for AI includes Mixed Precision Quantization to increase accuracy, Data Bandwidth Reduction techniques like multi-level tiling, Feature Map Partitioning to minimize bandwidth requirements, and Structured Sparsity utilization
- Synopsys MetaWare MX Development Toolkit supports different programming frameworks, different HW targets, is extensible, and includes state-of-the-art system level modeling

Thank You