
1 BSIMM FOUNDATIONS REPORT – VERSION 13

FOUNDATIONS
REPORT 2022

2 BSIMM FOUNDATIONS REPORT – VERSION 13

TABLE OF CONTENTS

PART 1: EXECUTIVE SUMMARY4
TRENDS AND INSIGHTS ... 5

Why We Do Software Security ..5
Where We Do Software Security ..5
How We Do Software Security ..6

WELCOME TO BSIMM13 ... 6

BSIMM13 DATA HIGHLIGHTS ... 7

CALL TO ACTION ..8
Plan Your Journey ...8
Get a Handle on What You Have ..9
Pay Attention to the Latest Trends ..9

THE BSIMM SKELETON ... 10

PART 2: TRENDS AND INSIGHTS12
SHIFT EVERYWHERE ...13

Translating Risk Numbers into Decisions ...13
Continuous Defect Discovery..13
Governance-as-Code ...13

SOFTWARE SUPPLY CHAIN RISK MANAGEMENT13
Software Bill of Materials ...14
Open Source Software ...14
Vendor Management ...14
Training for Outsourced Workers ..14

SECURITY INTEGRATION INTO DEVELOPER TOOLCHAINS 14
Dispersal into SDLC vs. Gates ...14
Automating Coding Standards ..14

EXPANDING SOFTWARE SECURITY
BEYOND APPLICATIONS AND PRODUCTS ..15

Leveraging Operational Data for Continuous Improvement15
Integration of Knowledge-as-Code ...15
Security Champions ...15

TOPICS WE’RE WATCHING ..15

PART 3: THE BSIMM COMMUNITY 16
PARTICIPANTS ...17

CASE STUDY: LENOVO .. 18

CASE STUDY: LEADING NORTH AMERICAN
FINANCIAL INSTITUTION ... 19

CASE STUDY: CRED .. 19

ACKNOWLEDGEMENTS ...20

PART 4: QUICK GUIDE
TO SSI MATURITY ..21
QUICK BASELINE FOR SSI LEADERS ...22

Is Your SSI Keeping Pace with Change
in Your Software Portfolio? ...22
Are You Creating the DevSecOps Culture You Need?22
Are You Shifting Security Efforts Everywhere
in the Engineering Lifecycle? ..22
How Does Your SSI Measure Up? ..22

USING A BSIMM SCORECARD TO MAKE PROGRESS23
Understand Your Organizational Mandate ...23
Build the Scorecard ...23
Make a Strategic Plan and Execute ...23

ROLES IN A SOFTWARE SECURITY INITIATIVE 25

PART 5: THE BSIMM FRAMEWORK26
CORE KNOWLEDGE ..27

UNDERSTANDING THE MODEL ..28

PART 6: THE BSIMM ACTIVITIES29
ACTIVITIES IN THE BSIMM ...30

GOVERNANCE ..30
Governance: Strategy & Metrics (SM) ..30
Governance: Compliance & Policy (CP) ...32
Governance: Training (T) ...34

INTELLIGENCE ..35
Intelligence: Attack Models (AM) ..35
Intelligence: Security Features & Design (SFD) 37
Intelligence: Standards & Requirements (SR) 38

SDLC TOUCHPOINTS ..39
SDLC Touchpoints: Architecture Analysis (AA) 39
SDLC Touchpoints: Code Review (CR) ...41
SDLC Touchpoints: Security Testing (ST) ..42

DEPLOYMENT .. 44
Deployment: Penetration Testing (PT) ...44
Deployment: Software Environment (SE) ..44
Deployment: Configuration Management &
Vulnerability Management (CMVM) ...46

3 BSIMM FOUNDATIONS REPORT – VERSION 13

APPENDICES ... 48
A. ROLES IN A SOFTWARE SECURITY INITIATIVE 49

EXECUTIVE LEADERSHIP .. 49

SOFTWARE SECURITY GROUP LEADERS ...50

SOFTWARE SECURITY GROUP (SSG) ..51

SATELLITE (SECURITY CHAMPIONS) ..51

KEY STAKEHOLDERS...52

B. HOW TO BUILD OR UPGRADE AN SSI 53

STARTING AN SSI: GETTING TO AN EMERGING STATE53
Create a Software Security Group ...54
Document and Socialize the SSDL ..55
Inventory Applications in the SSG’s Purview 55
Apply Infrastructure Security in Software Environments 55
Deploy Defect Discovery for High-Priority Applications 55
Publish and Promote the Process ..56
Progress to the Next Step in Your Journey 56

LESSONS FROM THE COMMUNITY ..56
Cultures ...56
A New Wave in Engineering Culture ...57
Understanding More About DevOps ..58
Convergence as a Goal ...58

MATURING AN SSI: HARMONIZING OBJECTIVES59
Establish Leadership and Objectives...59
Expand Security Controls ...59
Engage Development ...59
Inventory and Select In-Scope Software ...60
Enforce Security Basics Everywhere ...60
Integrate Defect Discovery and Prevention 61
Upgrade Incident Response ...61
Repeat and Improve ..61

ENABLING SSIs ...62
Progress Isn’t a Straight Line ...62
Push for Agile-Friendly SSIs ...62

C. DETAILED VIEW OF THE BSIMM FRAMEWORK 63

THE BSIMM SKELETON...63

CREATING BSIMM13 FROM BSIMM12 ..63

MODEL CHANGES OVER TIME ...67

D. DATA: BSIMM13 ... 69

AGE-BASED PROGRAM CHANGES ...69

ACTIVITY CHANGES OVER TIME ..71

E. DATA ANALYSIS: VERTICALS .. 73

IOT, CLOUD, AND ISV VERTICALS ...74

FINANCIAL, HEALTHCARE, AND INSURANCE VERTICALS 74

FINANCIAL AND TECHNOLOGY VERTICALS 75

TECHNOLOGY VS. NON-TECHNOLOGY ...76

VERTICAL SCORECARDS ...76

F. DATA ANALYSIS: LONGITUDINAL ..81

BUILDING A MODEL FOR SOFTWARE SECURITY 81

CHANGES BETWEEN FIRST AND SECOND ASSESSMENTS.........82

CHANGES BETWEEN FIRST AND THIRD ASSESSMENTS 84

G. DATA ANALYSIS: SATELLITE
(SECURITY CHAMPIONS) .. 86

H. DATA ANALYSIS: SSG ...88

SSG CHARACTERISTICS ... 88

SSG CHANGES BASED ON AGE .. 90

4 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 1:
EXECUTIVE
SUMMARY

5 BSIMM FOUNDATIONS REPORT – VERSION 13

EXECUTIVE SUMMARY
In 2008, application security, research, and analysis experts set out to
gather data on the different paths that organizations take to address
the challenges of securing software. Their goal was to conduct
in-person interviews with organizations that were known to be highly
effective in software security initiatives (SSIs), gather details about
their efforts, analyze the data, and publish their findings.

The result was the Building Security In Maturity Model (BSIMM), a
descriptive model—published as BSIMM1—that provides a baseline
of observed activities (i.e., controls) for software security initiatives
(SSIs) to build security in to software and software development.
Because these initiatives often use different methodologies and
different terminology, the BSIMM also creates a common vocabulary
everyone can use. In addition, the BSIMM provides a common
methodology for starting and improving SSIs of any size and in any
vertical market.

TRENDS AND INSIGHTS

These BSIMM trends and insights are a distillation
of software security lessons learned across 130
organizations that collectively have 11,850 security
professionals helping about 410,000 developers do
good security work on about 145,000 applications.
Use this information to inform your own strategy for
improvement.

Trends describe shifts in SSI behavior that affect activity
implementation across multiple areas. Larger in scope than an
activity, or even a capability that combines multiple activities within
a workflow, we believe these trends show the way organizations
are executing groups of activities within their evolving culture. For
example, there’s a clear trend toward collecting event-driven security
telemetry in addition to (or sometimes even rather than) conducting
point-in-time security scans that produce reports people must
review. Over time, we’ve seen a trend in testing being applied earlier
in the software lifecycle (“shift left”), followed by trends in additional
testing (e.g., composition analysis) and in testing automation (e.g., as
checkpoints in the software development lifecycle [SDLC]).

Refer to Part 2 later in this document for more Trends and Insights.

Why We Do Software Security
Software security leaders continue to face pressure to increase the
size, scope, depth, and complexity of their SSIs. From government
mandates to regulatory changes, technology shifts, budget and
hiring constraints, attacker successes, and marketplace demands,
software security leaders must do more with less, and do it better. In
short, expanded software security governance is a necessity in any
modern SSI.

However, governance done with people and checklists alone doesn’t
scale very far. A trend today is governance-as-code, where security

leaders provide their mandatory requirements (e.g., policies and
standards) as checks or guardrails (i.e., as code) in the engineering
infrastructure, enabling scaling automatically.

There has been much media, insurance, and executive attention on
security issues found in third-party code. This has led to a trend in
software supply chain risk management to track and secure external
software that’s integrated into internal software and systems. To
track this trend, BSIMM13 includes a new activity for integrating
supply chain risk management.

Open source software is now a common part of nearly every
development effort, which has led to a significant increase in efforts
around identifying open source and controlling open source risk,
whose observation rate—the rate at which we observed this effort
in the BSIMM community—grew by nearly 35% from BSIMM12 to
BSIMM13. Balancing the cost savings from open source use with
the risk incurred is becoming an important governance objective.
In some cases, it’s possible to control some risk associated with
third-party software through contractual terms. We’ve recently seen a
15% increase in efforts around creating service-level agreement (SLA)
boilerplate for software security responsibilities and including these
SLAs in vendor contracts.

Finally, software security and the responsibility for security leaders to
keep their organizations safe are growing in new ways. Beyond just
scaling with software portfolio size, software security is becoming
intertwined with cloud security, infrastructure security, container
security, orchestration security, site reliability, and much more. These
adjacent security disciplines can both support and undermine even
the best software security program. We see a trend in bridge-building
between these various groups for the purpose of defining and using
mutually beneficial security solutions.

Where We Do Software Security
Not so long ago, most organizations were attempting to manage
software security risk by doing some testing just before releasing
software to production. It quickly became evident that this approach
wasn’t working and couldn’t scale even if it was. The movement
to “shift left” in the SDLC put testing earlier, to happen while the
code was being written. This was much more scalable and kept
uncountable security defects from ever making it to production code.
However, such testing—usually static analysis with a tool—was still a
time-consuming gate that simply moved the friction between security
and engineering from the day before release to production to the day
before release to build.

Today, the trend continues toward “shift everywhere,” an approach
to embedding software security testing throughout the software
lifecycle in both development and operations. The move to more
testing done more often, usually using smaller tests that run faster,
enables the governance-as-code approach that organizations need.
Facilitating shift everywhere is a trend to translating risk numbers into
decisions where we see more than 25% growth in activities related
to combining security testing results to improve decision-making,
striving for data-driven change in software security processes, and
using metrics to drive resourcing.

6 BSIMM FOUNDATIONS REPORT – VERSION 13

As another aspect of shift everywhere, organizations are trending
toward distributing testing into engineering workflows—including
security tests in QA functional testing automation has grown by
almost 50%. There has also been steady growth in use of automated
tools, integrating security tools into the QA process, and defining
secure deployment parameters and configurations.

Some labor-intensive security testing has been on a downward
trend. For example, using secure coding guidance and enforcing
secure coding standards have declined for several years. In the past
year, however, we’ve seen a significant spike in both the usage and
enforcement aspects, presumably because it’s become much easier
to enforce coding standards with automated testing rather than
with peer code review processes that take up too much valuable
development time.

How We Do Software Security
For such a complicated endeavor, software development and
its associated security governance was also simple: write some
code, build it, then apply all the security testing there was time for.
Development then fixed the worst security defects discovered, and
some of the remainder became requirements for the next release.
Today, important aspects of software security are embedded
throughout people, process, technology, and culture.

Doing testing at a single SDLC gate became unacceptably inadequate
over time, and today we see a trend toward continuous defect
discovery, especially testing that can be automated into lifecycle
tooling. For example, effort in the BSIMM Code Review and Security
Testing practices each grew at almost twice the rate of effort in the
Penetration Testing and Architecture Analysis practices. There is also
continued growth in monitoring automated asset creation, with over
half the total observations occurring in the past year.

Doing good software security requires accurate and comprehensive
knowledge of software assets beyond compiling the list of software
developed in-house. A rapidly growing trend is to go beyond a simple
application list and to track all components within all deployed code.
Here, we’ve seen a nearly 30% growth in efforts related to creating
software bills of materials (SBOMs), which improve the software
inventory and help with incident response.

Good software security also requires a trained workforce. The trend
in providing software security training for vendors and outsourced
software workers increased steadily for years but recently dropped
by 30%. It’s possible organizations have found other ways to ensure
that software suppliers have adequate software security programs,
perhaps through a combination of attestations, reviews, and
contractual agreements.

We’ve seen a nearly 30% growth in
efforts related to creating software
bills of materials (SBOMs), which
improve the software inventory and
help with incident response.

Data turned into decision support knowledge is the lifeblood of a risk
management program. Organizations are, for example, leveraging
operational data about security defects to look for and fix all
occurrences of important defects found in operations, with a recent
growth of 175% in this effort. They are also using this decision support
knowledge to improve the SDLC based on issues found in operations,
which has grown by 70%, and using SDLC knowledge to improve
policy, which has grown by over 80%. This, and other useful knowledge,
is also beginning to be turned into code when possible. Efforts to
define secure deployment parameters and configurations (and to use
application containers to support security goals) grew by nearly 20%,
and the use of orchestration for containers grew by nearly 30%.

Once again, labor-intensive efforts are hard to staff, making them
hard to scale. Security champions—a team of people skilled in
various aspects of software security—are a good way to ensure
that evangelism, training, and governance reaches all parts of the
organization. There has recently been a 15% increase in the number
of firms that have a security champions group. Note also that there
has been a continuous trend over the years in organizations with a
champions group scoring higher than organizations without, currently
at about 35% (13 points) higher on average for BSIMM13.

WELCOME TO BSIMM13

If you’re in charge of an SSI, understanding the BSIMM
model and its use by the community will help you plan
strategic improvements. If you’re running technical
aspects of an initiative, you can use the how-to guide
(in Part 4) and activity descriptions (in Part 6) to help
define tactical improvements to people, process,
technology, and culture.

Each BSIMM annual report is the result of studying real-world SSIs,
which some organizations refer to as their application security
program or product security program, or as their DevSecOps effort.
Each year, a variety of firms in different industry verticals use the
BSIMM to create a software security scorecard for their programs that
they then use to manage their SSI improvements. Here, we present
BSIMM13 as built directly out of the data we observed in 130 firms.

In the rapidly changing software security field, it’s important to
understand what other organizations are doing in their SSIs.
Comparing the efforts of hundreds of companies to your own will
directly inform your strategy for your own software security efforts.

The BSIMM core knowledge is the activities we directly observed
in the community—the group of firms that participate in using the
BSIMM as part of their SSI management. Each community member
has their own unique SSI with an emphasis on the build-security-in
activities important to their business objectives, but they collectively
use the activities captured here. We organize that core knowledge
into a software security framework (SSF), represented in Figure 7.
The SSF is organized into four domains—Governance, Intelligence,
SSDL Touchpoints, and Deployment—with those domains currently
embracing 125 activities. The Governance domain, for example,
includes activities that fall under the organization, management, and
measurement practices of an SSI.

7 BSIMM FOUNDATIONS REPORT – VERSION 13

As with any research work, there are some terms that have specific
meanings in the BSIMM. The box below shows the most common
BSIMM terminology.

BSIMM13 DATA HIGHLIGHTS

Use the information in this section to answer common
questions about BSIMM data, such as, “What are some
community statistics?,” “Which activities are most
firms doing?,” and “How are software security efforts
changing over time?”

Activities are the building blocks and smallest unit of granularity that
are implemented across organizations to build SSIs. Rather than
dictating a set of prescriptive activities, the purpose of the BSIMM is
to descriptively observe and quantify the actual activities carried out
by various kinds of SSIs across many organizations.

The BSIMM is an observational model that reflects current software
security efforts, so we adjust it annually to keep it current. For
BSIMM13, we’ve made the following changes to the model based on
what we see in the BSIMM community:

• We moved activities related to controlling open source risk,
implementing cloud security controls, hosting software security
events, and requiring an annual training refresher because we
now see them more frequently.

• We moved activities related to security experts leading design
review efforts and using centralized defect reporting for targeted
training because they’re growing much more slowly than other
common activities in their practice areas.

• We added the following activities because we are beginning to
see them more in the community:
 - Integrate software supply chain risk management
 - Perform application composition analysis on code repositories
 - Do attack surface management for deployed applications

Unique in the software security industry, the BSIMM project has
grown from nine participating companies in 2008 to 130 in 2022,
now with nearly 3,350 software security group (SSG) members
and over 8,500 satellite members (aka security champions). The
average age of the participants’ SSIs is 5.0 years. The BSIMM project
shows consistent growth even as participants enter and leave the
community over time—we added 27 firms for BSIMM13 and dropped
25 whose data hadn’t been refreshed.

This 2022 edition of the BSIMM report—BSIMM13—examines
anonymized data from the software security activities of 130
organizations across various verticals, including cloud, financial
services, financial technology (FinTech), independent software
vendors (ISVS), insurance, Internet of Things (IoT), healthcare, and
technology organizations.

The popular business book, The 7 Habits of Highly Effective People,
explores the theory that successful individuals share common qualities
in achieving their goals and that these qualities can be identified and
applied by others. The same premise can be applied to SSIs. Listed in

BSIMM Terminology
Nomenclature has always been a problem in computer
security, and software security is no exception. Several
terms used in the BSIMM have particular meaning for us.
The following list highlights some of the most important
terms used throughout this document:

• Activity. Actions or efforts carried out or facilitated by the
SSG as part of a practice. Activities are divided into three
levels in the BSIMM based on observation rates.

• Capability. A set of BSIMM activities spanning one or more
practices working together to serve a cohesive security
function.

• Champions. Interested and engaged developers, cloud
security engineers, deployment engineers, architects,
software managers, testers, and people in similar roles who
have an active interest in software security and contribute to
the security posture of the organization and its software.

• Community. The group of firms in the current data pool.

• Data pool. The collection of assessment data from the
current community.

• Domain. One of the four categories the framework is
divided into, i.e., Governance, Intelligence, SSDL Touchpoints,
and Deployment.

• Practice. A grouping of BSIMM activities. The SSF is
organized into 12 practices, three in each of four domains.

• Satellite. A group of individuals, often called security
champions, that is organized and leveraged by an SSG.

• Secure SDL (SSDL). Any software lifecycle with integrated
software security checkpoints and activities.

• Software security framework (SSF). The basic structure
underlying the BSIMM, comprising 12 practices divided into
four domains.

• Software security group (SSG). The internal group charged
with carrying out and facilitating software security. The group’s
name might also have an appropriate organizational focus,
such as application security group or product security group.

• Software security initiative (SSI). An organization-wide
program to instill, measure, manage, and evolve software
security activities in a coordinated fashion. Also referred to
in some organizations as an application security program,
product security program, or perhaps as a DevSecOps
program.

Descriptions of the BSIMM domains, practices, and activities can be
found at www.bsimm.com/framework.html.

From an executive perspective, you can view BSIMM activities as
controls implemented in a software security risk management
framework. The implemented activities might function as preventive,
detective, corrective, or compensating controls. Positioning the
activities as controls allows for easier understanding of the BSIMM’s
value by governance, risk, compliance, legal, audit, and other risk
management groups.

https://www.bsimm.com/framework.html

8 BSIMM FOUNDATIONS REPORT – VERSION 13

Table 1 are the 10 most observed activities in the BSIMM13 data pool.
The data suggests that if your organization is working on its own SSI,
you should consider implementing these activities.

Table 2 shows some activities that have experienced exceptionally
high growth over the past 12 months. Not surprisingly, some of these
activities, such as control open source risk and identify open source, are
mentioned in the Trends and Insights section. In addition, the activity
introduced in BSIMM12, streamline incoming responsible vulnerability
disclosure, has the largest increase in observation count. Note that
for some of the activities in Table 2, the growth in observation is a
new change. For example, the activities make code review mandatory
for all projects, create a security portal, and provide expertise via open
collaboration channels saw virtually no growth in the previous three
years but all saw a significant jump in observation rates in the last 12
months. While one year of new data is not sufficient to establish a
trend, it is worth paying attention to and considering for your program.

CALL TO ACTION

Use the information in this section to prioritize
improvements in your SSI and perhaps also in the
SSIs of your most important software suppliers and
partners.

Every SSI has room for improvement, whether it’s improving scale,
effectiveness, depth, risk management, the framework of deployed
activities, resourcing, or anything similar. The following suggestions
represent the broad efforts we see happening in the BSIMM
community, and various parts are likely right for your program as well.

Take stock of your SSI. It’s important
to periodically look at your program
through a different lens.

Plan Your Journey
• Take stock of your SSI. It’s important to periodically look at your

program through a different lens, and the BSIMM enables that.
Use the guidance in Part 4 to create your own SSI scorecard and
compare it to your expectations.

• Create a vision and strategic plan. Use the activity descriptions in
Part 6 when creating a prioritized action plan for business areas
where your current SSI efforts fall short. Typical investment areas
include risk management, digital transformation, technical debt
removal, technology insertion, and process improvement.

Get a Handle on What You Have
• Inventory all your code. It’s likely that you’ll need specialized

automation to keep track of all the code you write and all the code

TABLE 1. TOP ACTIVITIES BY OBSERVATION PERCENTAGE. The most
frequently observed activities in BSIMM13 are likely important to all SSIs.

BSIMM13 TOP 10 ACTIVITIES

PERCENT DESCRIPTION

90.0% Implement security checkpoints and associated
governance.

88.5% Ensure host and network security basics are in place.

88.5% Identify privacy obligations.

87.7% Create or interface with incident response.

87.7% Use external penetration testers to find problems.

86.9% Perform security feature review.

83.1% Perform edge/boundary value condition testing during
QA.

82.3% Use automated code review tools.

80.0% Integrate and deliver security features.

79.2% Translate compliance constraints to requirements.

BSIMM13 TOP 10 ACTIVITIES GROWTH BY COUNT

INCREASE DESCRIPTION

20 Streamline incoming responsible vulnerability
disclosure.

20 Implement cloud security controls.

18 Control open source risk.

18 Identify open source.

16 Create a standards review process.

15 Gather and use attack intelligence.

13 Provide expertise via open collaboration channels.

13 Make code review mandatory for all projects.

13 Create a security portal.

11 Schedule periodic penetration tests for application
coverage.

TABLE 2. TOP ACTIVITIES BY RECENT GROWTH IN OBSERVATION COUNT.
These activities had the largest growth in BSIMM13, out of 44 firms measured
during the last 12 months, which means they are likely important to your
program now or will be soon.

9 BSIMM FOUNDATIONS REPORT – VERSION 13

you bring in from outside the organization. A simple application
inventory will be useful for some things, such as naming risk
managers, but you’ll quickly need specialized inventories such as
BOMs, API and microservices lists, code that is subject to specific
compliance needs, and much more.

• Automate, automate, automate. Search for ways to eliminate error-
prone manual processes and reduce friction between governance
and engineering groups, including automating security decisions.
This will require some policy-as-code effort and tools integration,
and maybe even bringing development skills into the SSG.

• Gather all the data. As more processes become code and more
policy and standards become machine-readable, day-to-day
development and operations will generate significantly more
telemetry about what’s happening and why. Use this data to
ensure that everything’s working as expected.

Even perfect software can have its
security undermined by mistakes

Here are some suggestions on reading
through this BSIMM report:
• If you’re experienced with the BSIMM, or if you need

some content to help make your case with executive
management, then Part 2: Trends and Insights are probably
what you’re looking for.

• If this is your first time with the BSIMM, we recommend first
reading Part 5 for context and then returning here to decide
what to read next.

• If you’re starting an SSI or an SSG, or looking to mature
an existing program, start with Part 4: Quick Guide to SSI
Maturity, then move to Appendix B: How to Build or Upgrade
an SSI, and then read through the activities in Part 6.

• If you want to get right into the types of software security
controls organizations are using in their SSIs, or if you are
working on building out capabilities, then read Part 6: The
BSIMM Activities.

• If you want to see a summary of the BSIMM13 data, review
Appendix D.

• If you want to look at our analysis of the BSIMM data, review
Appendices E though H.

• If you’d like to see a brief case study, the Case Studies section
has you covered.

elsewhere in the organization.

Pay Attention to the Latest Trends
• Innovate in digital transformation. Encourage your SSG and other

security stakeholders to experiment with ways to deliver security
value directly into engineering processes, especially where current
security testing tools don’t always keep up with engineering
changes, such as with serverless architectures, single-page
applications, API security, and zero trust.

• Secure the software supply chain. Nearly every organization today
uses third-party code and provides code as a third party to other
organizations. While producing SBOMs is easy, the management
of software, SBOMs, vendors, and vulnerability information is
much more complicated.

• Expand software security into adjacencies. Even perfect software
can have its security undermined by mistakes elsewhere in
the organization. Make explicit ties between the SSI and other
security stakeholders working in areas such as container security,
orchestration security, cloud security, infrastructure security, and
site reliability.

In summary, the data shows that new SSIs—from just started to 18
months old—are typically doing about 33 BSIMM activities. These
organizations are also beginning to scale these activities across their
software portfolio, deal with all the change going on around them,
and evolve their risk management strategy.

10 BSIMM FOUNDATIONS REPORT – VERSION 13

GOVERNANCE

STRATEGY & METRICS COMPLIANCE & POLICY TRAINING

• Publish process and evolve as necessary.
• Educate executives on software security.
• Implement security checkpoints and associated

governance.
• Publish data about software security internally

and use it to drive change.
• Enforce security checkpoints and track

exceptions.
• Create or grow a satellite (security champions).
• Require security sign-off prior to software

release.
• Create evangelism role and perform internal

marketing.
• Use a software asset tracking application with

portfolio view.
• Make SSI efforts part of external marketing.
• Identify metrics and use them to drive

resourcing.
• Integrate software-defined lifecycle governance.
• Integrate software supply chain risk

management.

• Unify regulatory pressures.
• Identify privacy obligations.
• Create policy.
• Build a PII inventory.
• Require security sign-off for compliance-related

risk.
• Implement and track controls for compliance.
• Include software security SLAs in all vendor

contracts.
• Ensure executive awareness of compliance and

privacy obligations.
• Document a software compliance story.
• Ensure compatible vendor policies.
• Drive feedback from software lifecycle data

back to policy.

• Conduct software security awareness training.
• Deliver on-demand individual training.
• Include security resources in onboarding.
• Enhance satellite (security champions) through

training and events.
• Create and use material specific to company

history.
• Deliver role-specific advanced curriculum.
• Host software security events.
• Require an annual refresher.
• Reward progression through curriculum.
• Provide training for vendors and outsourced

workers.
• Provide expertise via open collaboration

channels.
• Identify new satellite members (security

champions) through observation.

INTELLIGENCE

ATTACK MODELS SECURITY FEATURES & DESIGN STANDARDS & REQUIREMENTS

• Use a data classification scheme for software
inventory.

• Identify potential attackers.
• Gather and use attack intelligence.
• Build attack patterns and abuse cases tied to

potential attackers.
• Create technology-specific attack patterns.
• Maintain and use a top N possible attacks list.
• Collect and publish attack stories.
• Build an internal forum to discuss attacks.
• Have a research group that develops new

attack methods.
• Create and use automation to mimic attackers.
• Monitor automated asset creation.

• Integrate and deliver security features.
• Application architecture teams engage with the

SSG.
• Leverage secure-by-design components and

services.
• Create capability to solve difficult design

problems.
• Form a review board or central committee to

approve and maintain secure design patterns.
• Require use of approved security features and

frameworks.
• Find and publish secure design patterns from

the organization.

• Create security standards.
• Create a security portal.
• Translate compliance constraints to

requirements.
• Create a standards review process.
• Identify open source.
• Create SLA boilerplate.
• Control open source risk.
• Communicate standards to vendors.
• Use secure coding standards.
• Create standards for technology stacks.

THE BSIMM SKELETON
The BSIMM skeleton provides a way to view activities at a glance,
which is useful when thinking about your own SSI. The skeleton
is shown in Figure 1, organized by domains and practices. More
complete descriptions of the activities and examples are available in
Part 6 of this document.

Use this skeleton to understand the software security
activities included in BSIMM13. A list of software
security controls can be a very helpful guide, and the
BSIMM project has worked since 2008 to ensure that
its content matches real-world efforts.

11 BSIMM FOUNDATIONS REPORT – VERSION 13

SSDL TOUCHPOINTS

ARCHITECTURE ANALYSIS CODE REVIEW SECURITY TESTING

• Perform security feature review.
• Perform design review for high-risk

applications.
• Use a risk methodology to rank applications.
• Perform architecture analysis using a defined

process.
• Standardize architectural descriptions.
• Have SSG lead design review efforts.
• Have engineering teams lead AA process.
• Drive analysis results into standard architecture

patterns.
• Make the SSG available as an AA resource or

mentor.

• Perform opportunistic code review.
• Use automated code review tools.
• Make code review mandatory for all projects.
• Assign code review tool mentors.
• Use custom rules with automated code review

tools.
• Use a top N bugs list (real data preferred).
• Use centralized defect reporting to close the

knowledge loop.
• Build a capability to combine AST results.
• Create capability to eradicate bugs.
• Automate malicious code detection.
• Enforce secure coding standards.

• Perform edge/boundary value condition testing
during QA.

• Drive tests with security requirements and
security features.

• Integrate opaque-box security tools into the QA
process.

• Drive QA tests with AST results.
• Include security tests in QA automation.
• Perform fuzz testing customized to application

APIs.
• Drive tests with design review results.
• Leverage code coverage analysis.
• Begin to build and apply adversarial security

tests (abuse cases).
• Implement event-driven security testing in

automation.

DEPLOYMENT

PENETRATION TESTING SOFTWARE ENVIRONMENT CONFIGURATION MANAGEMENT &
VULNERABILITY MANAGEMENT

• Use external penetration testers to find
problems.

• Feed results to the defect management and
mitigation system.

• Use penetration testing tools internally.
• Penetration testers use all available

information.
• Schedule periodic penetration tests for

application coverage.
• Use external penetration testers to perform

deep-dive analysis.
• Customize penetration testing tools.

• Use application input monitoring.
• Ensure host and network security basics are in

place.
• Implement cloud security controls.
• Define secure deployment parameters and

configurations.
• Protect code integrity.
• Use application containers to support security

goals.
• Use orchestration for containers and virtualized

environments.
• Use code protection.
• Use application behavior monitoring and

diagnostics.
• Create bills of materials for deployed software.
• Perform application composition analysis on

code repositories.

• Create or interface with incident response.
• Identify software defects found in operations

monitoring and feed them back to
development.

• Have emergency response.
• Track software bugs found in operations

through the fix process.
• Develop an operations software inventory.
• Fix all occurrences of software bugs found in

operations.
• Enhance the SSDL to prevent software bugs

found in operations.
• Simulate software crises.
• Operate a bug bounty program.
• Automate verification of operational

infrastructure security.
• Publish risk data for deployable artifacts.
• Streamline incoming responsible vulnerability

disclosure.
• Do attack surface management for deployed

applications.

FIGURE 1. THE BSIMM SKELETON. Within the SSF, the 125 activities are organized into the 12 BSIMM practices, which are within four domains.

12 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 2:
TRENDS AND
INSIGHTS

13 BSIMM FOUNDATIONS REPORT – VERSION 13

TRENDS AND INSIGHTS

Where do we get the data, and why should
you participate?
BSIMM data originates in interviews conducted with
member firms during a BSIMM assessment. Through
these in-depth conversations, assessors look for the
existence of BSIMM activities and assign credit for
activities that are performed with sufficient coverage
across the organization, formality to be repeatable
and consistent, and depth to be effective at managing
associated risk. After each assessment, the observation
data is anonymized and added to the BSIMM data
pool, where statistical analysis is performed to
highlight trends in how firms secure their software.
You can use this information to understand what
others are doing to then inform your own strategy.

Businesses have seen drivers, pressures, and threats come from
nearly every direction. Ransomware attacks have put pressure on
supply chains and manufacturing sectors. Industries are facing new
regulations or having to re-adapt to old ones as cryptocurrencies
go mainstream and interact with currency and banks. The US
government has made cybersecurity a priority and is releasing
executive orders to put it on industry’s radar. The outbreak of war is
bringing hacktivism back after a relatively quiet period. Of course,
there have also been new software languages and technology
stacks, massive shifts to the cloud, and over two years of working
from home.

These and other external drivers are being met by organizational
transformations facilitated by new technologies, expanded
processes, changes in the security culture, and increased supply
chain security efforts.

SHIFT EVERYWHERE
Starting more than 15 years ago, the “shift left” trend drove firms
to focus on moving security testing earlier in the development
process, starting with doing SAST during development. Much more
recently, “shift everywhere” extends this trend into making security
testing continuous throughout the software lifecycle. This means
that smaller, faster, pipeline-driven security tests are conducted as
soon as there is an artifact to test. These tests are often smaller
and context-specific, such as validating the use of a required
library during a pull request, rather than waiting until a build cycle
or a penetration test—and these tests can happen anywhere from
design to production. A shift everywhere approach is useful for
more than just testing for vulnerabilities in a timely fashion; it also
facilitates automating governance checks and measuring risk in
various parts of the software lifecycle. For example, shifting right
into production might entail using automated tests to continuously
verify that only those APIs with proper documentation are allowed
to receive certain traffic.

Translating Risk Numbers into Decisions
BSIMM13 data shows an increase in firms that collect and combine
data from various sources throughout the SDLC to support security
decisions. There was more than 25% average growth in related
activities such as build a capability to combine AST results, publish data
about software security internally and drive change, and identify metrics
and use them to drive resourcing. Collecting and combining data is an
important step in shaping risk-based secure SDLC governance and is
also a necessary step in governance-as-code efforts.

Continuous Defect Discovery
Firms are increasing adoption of automated defect discovery
approaches that favor continuous monitoring and reporting over
expert-intensive point-in-time defect discovery. For example, effort in
the Code Review and Security Testing practices each grew at almost
twice the rate of the effort in the Penetration Testing and Architecture
Analysis practices. There is also continued growth in monitoring
automated asset creation, with over half the total observations
occurring in the past year. Shifting everywhere in the SDLC with
integrated tooling is an important step in increasing governance while
minimizing friction with engineering processes.

Governance-as-Code
Firms are augmenting their implementations of governance-as-
code by integrating off-the-shelf CI/CD pipeline solutions with their
custom automation or in-house solutions. In some cases, decisions
about what to test and when are being implemented in the same
commercial software that runs integration tests and software
pushes. These automation approaches enable the translation
of software security standards and policy into human-readable
configuration code or simplified code that conducts software
vulnerability discovery.

SOFTWARE SUPPLY CHAIN RISK
MANAGEMENT
Increased media attention on critical vulnerabilities discovered in
third-party libraries and on supply chain instability caused by global
events has increased executive attention on software risk that
doesn’t originate in the firm’s own SDLC. Efforts to manage software
supply chain risk are focusing on tracking and securing software that
is integrated into in-house-built software and ensuring that software
suppliers follow best practices.

After observing increased efforts around controlling risk associated
with software brought into the firm, BSIMM13 added the integrate
supply chain risk management activity. This activity captures efforts
to manage risk through governance-driven access and usage
controls, maintenance standards, and provenance data. Because
software supply chain risk can be introduced at any point in the
lifecycle of internally built or bespoke software, firms are moving
to automated solutions to ensure that all access, usage, and
modifications are done in accordance with policy everywhere in the
software lifecycle.

14 BSIMM FOUNDATIONS REPORT – VERSION 13

Software Bill of Materials
An SBOM is a machine-readable listing of all the components
included in a set of software and aids in identifying which software
components could include a publicly disclosed security vulnerability.
Firms are adding SBOM generation to their security capabilities to
both aid in managing the risk posed by vulnerabilities discovered
in the open source they use and to improve their ability to respond
promptly to disclosed vulnerabilities. This usefulness likely drove
the 30% growth of create bills of materials for deployed software.
This new effort also contributed to the addition of a new activity
for BSIMM13: perform application composition analysis on code
repositories.

Open Source Software
Firms are getting better at managing the risk associated with
integrating open source software into their own applications.
Increased media coverage of vulnerabilities found in open source
libraries is bringing added executive attention to this area, and the
availability of software composition analysis tooling is continuing
to fuel year-over-year growth of the identify open source and control
open source risk activities, which grew by nearly 35%. Firms won’t
be able to get ahead of critical vulnerabilities in their open source
libraries without building a comprehensive approach to managing
this risk.

Vendor Management
Firms are increasing pressure on vendors by communicating and
imposing software security standards on the supplied software.
Observations of the communicate standards to vendors and ensure
compatible vendor policies activities grew by over 50% in BSIMM13.
Organizations are also increasing their use of standard SLA terms
in contracts with vendors and outsource providers to ensure that
third-party software won’t jeopardize compliance with their software
security standards. The create SLA boilerplate and include software
security SLAs in all vendor contracts activities are continuing to grow
year-over-year and saw a 15% increase in observations. Ensuring
that vendor-supplied software is held to the same security standards
as internally built software is essential to managing risk across the
entire software portfolio.

Training for Outsourced Workers
Not all trends happen in a positive direction. The activity with the
largest drop in observation rates in BSIMM13 is provide training
for vendors and outsourced workers. The observations for this
activity grew steadily over the lifetime of the BSIMM. In BSIMM13,
however, the observation rate fell by 30%. Of the 44 firms measured
between BSIMM12 and BSIMM13, only two were providing training
to vendors and outsourced workers, and the overall BSIMM13
measurement fell to 16 observations as data aged out of the
BSIMM13 data pool. This fall in observations might also be linked
to growth in the create SLA boilerplate and include software security
SLAs in all vendor contracts activities, where organizations might
specify training requirements that contracted firms are expected to
provide their development teams.

SECURITY INTEGRATION INTO
DEVELOPER TOOLCHAINS
Developers and software vendors continue to make progress in
integrating security options into CI/CD pipelines and toolchains. These
integrations provide faster and tighter processes that reduce friction,
improve coverage, and make the shift everywhere concept a reality.

In the early days of application security, firms found vulnerabilities
everywhere they looked—in production, in pre-release products, and
in news reports about their software. Shift left was a call to move
testing efforts earlier into the development lifecycle to find and fix
software vulnerabilities before they could be taken advantage of in
production. For a waterfall development structure, shift left meant
examining designs during the design phase, testing code when that
code was being built, and testing applications as soon as they could
run. This view had to evolve and adapt as Agile sprints meant, for
example, that the design phase might last for an hour every four
weeks, and the shift left team might not get the recurring meeting
invite.

Shift everywhere requires a modernized testing philosophy that uses
smaller, faster, sometimes pipeline-driven tests to look for issues
whenever there is an opportunity to check software and automated
processes for verifying adherence to security expectations.

Dispersal into SDLC vs. Gates
Firms are shifting responsibility from monolithic permit-to-release
gates into smaller automated checks embedded within the SDLC—
one example is the include security tests in QA automation activity
growing by nearly 50% in BSIMM13. The commonly performed
automated testing activities use automated code review tools,
integrate opaque-box security tools into the QA process, and define
secure deployment parameters and configurations continued their
above average growth, as compared to the lack of growth in activities
associated with penetration testing and manual code review. Firms
can ease the friction associated with enforcing security policy by
applying the right test at the right time, such as by incorporating
security testing into QA and other automated checkpoints within the
SDLC.

Automating Coding Standards
The activities around generating and enforcing coding standards
have traditionally been among the rarer activities. Observations of the
use secure coding standards activity declined by more than 60% from
BSIMM6 to BSIMM12. Similarly, firms have had trouble mandating
those same standards, with enforce secure coding standards
dropping to zero in BSIMM12. But in BSIMM13, the observation rate
for use secure coding standards grew by almost 90%, and there are
three new observations for enforce secure coding standards. Firms
are perhaps finding ways to move from labor-intensive effort to
automating standards enforcement via, for example, security anti-
patterns that are automatically tested for with pipeline-driven checks.
This rebound indicates firms are changing how they use and enforce
coding standards by taking advantage of improved automation
support in development toolchains.

15 BSIMM FOUNDATIONS REPORT – VERSION 13

EXPANDING SOFTWARE SECURITY
BEYOND APPLICATIONS AND
PRODUCTS
Application security teams have had to follow whenever software
security has expanded to include infrastructure-as-code, containers,
cloud platforms, and more. The key to keeping up with new security
domains is redefining how the SSI is positioned within the firm. It’s
no longer enough to have a hands-off, test-and-enforce approach
to security. Instead, SSI leaders need to become thought leaders,
influencers, mentors, and enablers of their peers to ensure that
infrastructure is built securely, APIs have the needed controls to
securely communicate across new architectures, and application
security is proactive in preventing risk in the first place.

Leveraging Operational Data for Continuous
Improvement
There is tremendous growth in activities that indicate security teams
are working with operations to secure the application portfolio. When
a vulnerability is found in operations, the first step is to work with
developers to fix that vulnerability. To go beyond that, some firms are
also using that bug to start a wider process, as seen in observations
of the fix all occurrences of software bugs found in operations
activity growing by 175%. The next step in continuous security
improvement goes beyond fixing and into discovering why the bugs
were introduced, then building a capability to prevent the error, as
shown by the enhance the SSDL to prevent software bugs found in
operations activity growing by over 70%. Finally, observations of the
drive feedback from software lifecycle data back to policy activity grew
by over 80%, showing that firms are learning from these steps and
updating policy based on expanded bug eradication efforts.

Integration of Knowledge-as-Code
SSGs are working with infrastructure teams to capture security
knowledge and encode it in human-readable, machine-deployable
configurations. This partnership allows developers to have safe and
reliable production platforms for their software to run on, and here we
see that observed counts of the define secure deployment parameters
and configurations and use application containers to support security
goals activities both grew by nearly 20%. Observations of leverage
secure-by-design components and services also grew by nearly 20%
as firms built a library of reusable and vetted security IP. In addition,
firms took advantage of improved infrastructure automation and
orchestration to deploy applications in containers that are monitored
for configuration drift and non-compliance, which contributed to
a nearly 30% growth in observations of the use orchestration for
containers and virtualized environments activity.

Security Champions
A perennial trend is that firms with a security champions (satellite)
group score, on average, 35% (13 points) higher than firms without
one. A security champions group allows the SSG to have deputized
security experts embedded throughout the SDLC, which enables
firms to get broader and deeper coverage of security activities
across their software portfolio. This engagement has historically
been crucial to executing security tasks such as integrating tools,
remediating security defects, responding to security incidents,
offering just-in-time training, and motivating good security practices
in application teams.

As organizations seek to integrate security into their development
and operations, security champions continue to drive some
DevSecOps transformation at the developer level. The presence of
security champion programs grew by 15% in BSIMM13.

TOPICS WE’RE WATCHING
In this industry, the only constant is change. Continuing innovation
in architectures, hosting environments, development languages,
attackers, attacks, and even new market areas all contribute to the
ongoing changes in what SSIs are expected to secure, how they go
about securing them, and how developers can take advantage of
these advances in a secure fashion.

The following topics might influence future trends and BSIMM
activities:

• API security and visibility. All firms are struggling with API
documentation, given that undocumented API endpoints aren’t
easily discoverable, securable, or testable and can be labor-
intensive to document once they are discovered.

• Smart contracts and blockchains. The blockchain with smart
contracts is changing the way companies execute agreements
and interact with clients and the world.

• Automated SDLC observability platforms. In order to help
organizations combine, normalize, and make sense of data from
disparate sources, observability platforms seek to automatically
collect, process, and report data about all facets of application
development, testing, and operations.

• Zero trust. While not a new idea, zero trust is now coming into
its own as the architecture that might solve the porous attack
surface represented by cloud-hosted, microservice-driven,
containerized API architectures.

• AI-generated code. As we hear stories about complex code
writing other complex code, we look forward to learning how that
impacts SSIs.

16 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 3:
THE BSIMM
COMMUNITY

17 BSIMM FOUNDATIONS REPORT – VERSION 13

PARTICIPANTS
The 130 organizations in BSIMM13 fall across various verticals,
including cloud, financial services, FinTech, ISVS, insurance, IoT,
healthcare, and technology organizations (see Figure 2). They also
fall across multiple regions.

Unique in the software security industry, the BSIMM project has
grown from nine participating companies in 2008 to 130 in 2022,
currently with nearly 3,350 software security group members and
over 8,500 satellite members (aka security champions). Today, the
average age of the participants’ SSIs is 5.0 years. As seen in Table
3, the BSIMM project shows consistent growth even as participants
enter and leave the community over time.

FIGURE 2. BSIMM13 COMMUNITY PARTICIPANTS. Participant percentages per tracked vertical and region.

TABLE 3. BSIMM COMMUNITY NUMBERS OVER TIME. The chart shows how the BSIMM study has grown over the years.

THE BSIMM COMMUNITY

The BSIMM community comprises software security
leaders and team members from around the globe.
They have a common mission to continuously improve
their SSIs in light of changes in the world around them.
You can use this information to learn from their efforts.

This 2022 edition of the BSIMM report—BSIMM13—examines
anonymized data from the software security activities of 130
organizations. This diverse group spans multiple sizes of security
teams, development teams, and software portfolios, as well as
regions, vertical markets, and security team ages.

BSIMM COMMUNITY NUMBERS OVER TIME

BSIMM13 BSIMM12 BSIMM11 BSIMM10 BSIMM9 BSIMM8 BSIMM7 BSIMM1

Firms 130 128 130 122 120 109 95 9

SSG Members 3,342 2,837 1,801 1,596 1,600 1,268 1,111 370

Satellite Members 8,508 6,448 6,656 6,298 6,291 3,501 3,595 710

Developers 408,999 398,544 490,167 468,500 415,598 290,582 272,782 67,950

Applications 145,303 153,519 176,269 173,233 135,881 94,802 87,244 3,970

Average SSG Age
(Years) 5.00 4.41 4.32 4.53 4.13 3.88 3.94 5.32

SSG Average of
Averages (SSG per
Developers)

3.01 / 100 2.59 / 100 2.01 / 100 1.37 / 100 1.33 / 100 1.60 / 100 1.61 / 100 1.13 / 100

EMEA North AmericaAPACFinTech
Cloud ISV

Insurance
Financial
IOTHealthcare

Technology

12%

13%

75%

5%
7%

7%

9%

16%

17%

18%

21%

18 BSIMM FOUNDATIONS REPORT – VERSION 13

CASE STUDY: LENOVO
“The BSIMM helps Lenovo plan and measure our own security
program and gain a sense of the practice areas that are most
important to our customers”

Lenovo is a $70 billion revenue global technology powerhouse,
ranked #159 in the Fortune Global 500, employing more
than 70,000 people around the world, and serving millions of
customers in 180 markets. Focused on a bold vision to deliver
smarter technology for all, Lenovo has built on its success as the
world’s leading PC player by expanding into new growth areas of
infrastructure, mobile, solutions and services.

Securing Lenovo Products
“I lead the Lenovo Infrastructure Solutions Group (ISG) Product
Security Office and am part of Lenovo’s corporate security
leadership team,” says Bill Jaeger, Executive Director of Lenovo’s
ISG Product Security Office. “My organization is responsible for
Lenovo ISG’s secure development life cycle and securing the
products Lenovo ISG sells, such as data center and edge servers,
high-performance (super) computers, enterprise storage, system
management software, and other infrastructure solutions.”

“Our product security group covers the entire portfolio of products
and productized services – from edge to cloud – including
firmware, mobile applications, virtual appliances, traditional
on-prem applications and utilities, hosted applications, and ‘as-a-
Service’ offerings. We perform hundreds of security assessments
and reviews each year encompassing all new product introductions
and releases of Lenovo-branded ISG product and productized
service offerings.”

“Lenovo is committed to offering products that meet or exceed
industry standards for security. Our customers must be able to use
Lenovo’s products with confidence that they have the tools that
enable them to protect their data, and that our products minimize
the risk of vulnerability to malicious or unauthorized use or attack
by any third party.”

Key principles of Lenovo’s software security group—established as
a corporate product security program in 2014—include:

• Security is designed into Lenovo products

• Lenovo has robust security processes

• Security is considered throughout the product lifecycle

• Employees, stakeholders, and suppliers are required to support
these commitments

• Lenovo product security program establishes Product Security
Offices led by a Chief Security Officer

• “We’ve seen a measurable reduction in product security issues
reported to our Product Security Incident Response Team
for newer products as compared to legacy products,” Jaeger
continues. “For example, reductions in product vulnerability
count and severity as well as increased product security
resiliency over time. Product security translates into enhanced
confidence in our products and in Lenovo.”

“The BSIMM community itself is also
a fantastic resource with members
generously sharing experiences
and lessons learned. We’re all on a
similar journey, and those f irms just
starting their activities can learn
so much from those that started
earlier. “

— BILL JAEGER, EXECUTIVE DIRECTOR OF LENOVO’S
ISG PRODUCE SECURITY OFFICE.

The BSIMM Experience
• Lenovo’s latest BSIMM assessment, conducted in 2021, found

the company’s product security program to be in the top
percentile of software security initiatives, more mature than
typical for a relatively young security program.

• “Our experience with BSIMM has been highly positive,” Jaeger
notes. “We joined the BSIMM community in 2015 and have
found significant value in BSIMM’s annually refreshed real-world
activity observations. They help us plan and measure our own
security program and gain a sense of the practice areas that
are most important to our customers in each industry vertical. “

• “The BSIMM community itself is also a fantastic resource
with members generously sharing experiences and lessons
learned. We’re all on a similar journey, and those firms just
starting their activities can learn so much from those that
started earlier.”

19 BSIMM FOUNDATIONS REPORT – VERSION 13

CASE STUDY: LEADING NORTH AMERICAN FINANCIAL INSTITUTION
A leading North American financial institution offers a full range of
advice, solutions, and services through its digital banking network
and locations around the world across personal, business banking,
and commercial banking.

“We’ve been building and maturing our software security initiative
since 2013 and continue to introduce new security capabilities
as our business needs demand,” says their senior manager of
application security. “Our current programs include building and
publishing application security standards and guidelines; software
security training and awareness; applying security testing during
development as well as deploying runtime vulnerability detection
and protection. We’re also in the process of revamping our security
champions program and have a DevSecOps pilot that we plan to
roll out enterprise wide.”

“We became a member of the BSIMM community in 2015,” he
continues. “BSIMM offers one of the best security reference and
guidance models available. We highly value the BSIMM framework
and description of security practices. We’ve found that the BSIMM

assessment and comparison against our peers is extremely useful
information for setting the direction and scope of our security efforts.”

A BSIMM assessment provides an objective, data-driven evaluation
for organizations seeking to improve their security postures and
can be used for decisions about allocation of resources, time,
budget, and priorities. “The assessment helps us understand how
our peers are doing, and the most important and least important
security practices are in our industry,” says the senior manager of
application security. “It’s a great reference source to help us build
out our security roadmaps.”

“BSIMM offers one of the best
security reference and guidance
models available industrywide.”

—SENIOR MANAGER OF APPLICATION SECURITY

CASE STUDY: CRED
“We wanted to do an industry benchmark of the security process
established within CRED and understand where we stand with
respect to other organizations in the world.”

An exclusive community where members are rewarded for good
financial behavior, CRED was born out of a need to bring back the
focus on trust, the idea being to create a community centered
around this virtue. CRED as an institution has a solid reputation of
providing a wide variety of product offerings to its members—from
lifestyle services to personal finance.

“Security has been ingrained into our culture since inception,” says
Himanshu Kumar Das, CISO, CRED. “A ‘security-first’ company,

CRED has its software security initiatives in place from day 1 and
during our 3+ years of existence, we have established maturity in
multiple key disciplines of security.”

“We have around 350+ internal micro services which are updated
multiple times a day with changes deployed in several iterations,”
says Anirudh Anand, Team Lead, Product Security. “Thorough
security review of these changes is performed on a regular basis
during release cycles. CRED Android/iOS mobile applications are fully
reviewed before being shipped fortnightly. We also perform weekly,
quarterly, and annual vulnerability assessment and penetration testing
(VAPT) as part of the vulnerability management process.”

20 BSIMM FOUNDATIONS REPORT – VERSION 13

 THE BSIMM ONLINE COMMUNITY
The BSIMM is not just a report of the state of the industry—it’s bigger
than that. The BSIMM online community is where software security
leaders come to learn, share ideas, and get customized information
to reduce their software risk.

The online community is a unique, members-only forum that helps
members address software security challenges in today’s complex
business environments.

Member benefits in the BSIMM community include:

• Discussion forum with peers

• Free e-learning courses

• Original content (blogs, profiles)

• Two annual conferences

• Conference archives

• Webinars and podcasts

• Industry reports and more

From content authored by industry-leaders to hands-on interactions
with fellow BSIMM members, it’s a powerful resource for
collaborative problem solving, thought leadership, and access to
valuable resources not available anywhere else.

ACKNOWLEDGEMENTS
Our thanks to the 130 executives, including those who wish to remain
anonymous, from the SSIs we studied to create BSIMM13.

Our thanks also to the nearly 140 individuals who helped gather the
data for the BSIMM data pool over time.

In particular, we thank Tony Blakemore, Adam Brown, Matthew
Chartrand, Eli Erlikhman, Jacob Ewers, Stephen Gardner, iMan Louis,
Sammy Migues, Alistair Nash, Kevin Nassery, Donald Pollicino,
Brendan Sheairs, Denis Sheridan, and Li Zhao.

BSIMM13 was authored by Jamie Boote, Eli Erlikhman, Stephen Gardner,
and Sammy Migues. In addition, we give a special thank you to Kathy
Clark-Fisher and Ryan Francis, whose behind-the-scenes work keeps the
BSIMM science project, conferences, and community on track.

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/legalcode
or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

AARP

Adobe

Aetna

Ally Bank

Axway

Bank of America

Bell Network

CIBC

Cisco

Citi

Diebold Nixdorf

Depository Trust & Clearing
Corporation

Egis

Eli Lilly and Company

eMoney Advisor

EQBank

Equifax

Fidelity

Finastra

Freddie Mac

F-Secure

Genetec

HCA Healthcare

Honeywell CE

HSBC

Imperva

Inspur Software

Intralinks

iPipeline

Johnson & Johnson

Landis+Gyr

Lenovo

MassMutual

MediaTek

Medtronic

Navient

Navy Federal Credit Union

NEC

NetApp

Oppo

PayPal

Pegasystems

Principal Financial

Realtek

Reckitt

SambaSafety

ServiceNow

Signify

SonicWall

Synchrony Financial

TD Ameritrade

Teradata

Trainline

Trane

U.S. Bank

Veritas

Verizon Media

Vivo

World Wide Technology

ZoomInfo

21 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 4:
QUICK GUIDE
TO SSI MATURITY

22 BSIMM FOUNDATIONS REPORT – VERSION 13

QUICK GUIDE TO SSI MATURITY

Eleven questions can help clarify where your SSI is
today. Combined with a detailed software security
scorecard (see below on how to measure your
own program) and knowledge about roles and
responsibilities, you can use this information to plan
strategic changes for ongoing success.

SSI maturity is a complex thing. Each organization will apply different
values to efforts and progress in people, process, technology, and
culture. They will also evolve differently in their vision for success as
well as how they spend resources, grow the program, and manage
risk. This section provides an approach to organizing, growing, and
maturing an SSI that works for everyone. Refer to Appendix B for
more details.

QUICK BASELINE FOR SSI LEADERS
All program leaders require a detailed understanding of their efforts
and whether those efforts align with business objectives. A good
start here is to understand whether organizational SSI efforts align
well with changes in the software security landscape driven by global
events, digital transformation, and engineering evolution, as well as
with how software is made today. Use your answers to the questions
below to determine whether it’s time to invest in new growth. If you
don’t know all these answers, use the list to gather information from
every SSI stakeholder responsible for aspects of software security
risk management.

Is Your SSI Keeping Pace with Change in Your
Software Portfolio?
• Do you maintain a current view of all your software assets,

including internal code, third-party code, open source, automation
scripts, infrastructure-as-code, and other software assets?

• Are you using SBOMs that detail all components in the SSI’s
software portfolio in your risk management processes?

• Do you have a near-real-time view of the software deployments
in your operations environments, along with a view into their
aggregate attack surface and aggregate risk?

Are You Creating the DevSecOps Culture You
Need?
• Are you building bridges between the various software security

stakeholders in your organization—governance, technical, audit,
vendor management, cloud, and so on—to align culture, approach,
technology stacks, and testing strategies?

• Have you scaled your satellite group program across your software
portfolio, including skills specific to automation, technology stacks,
application architectures, and other important needs?

• Are you delivering important security policy, standards, and
guidelines as code that runs in engineering and operations
toolchains?

Are You Shifting Security Efforts Everywhere in
the Engineering Lifecycle?
• Are you automating security decisions to remove time-consuming

manual review and moving toward an auditable, governance-as-
code secure SDLC?

• Are you following a shift everywhere strategy to move from large,
time-consuming security tests to smaller, faster, timely, pipeline-
driven security tests conducted to improve engineering team
performance?

• Are you looking in the source code, builds, and operational
software for malicious code that might have been introduced
into your critical software, whether that software is developed
internally or externally?

How Does Your SSI Measure Up?
• Do you routinely use telemetry from security testing, operations

events, risk management processes, event postmortems, and
other efforts to drive process improvements in your secure SDLC
or governance improvements in your policies and standards?

• Does your SSI strategy account for the impact on software
security caused by adjacent disciplines that require their own
security efforts, such as cloud, container, orchestration, source
content management, development pipeline, shared responsibility
models, and so on?

Most organizations have already covered the basics of software
security policy, testing, and outreach. It takes a concerted effort
to scale an SSI to address changes in portfolio size, technology,
infrastructure, regulation, laws, attackers, attacks, and more. Internal
review and reflection on efforts versus needs is always a good way to
move forward.

23 BSIMM FOUNDATIONS REPORT – VERSION 13

USING A BSIMM SCORECARD TO MAKE
PROGRESS
A BSIMM scorecard is a management tool that allows your SSI and
SSG leadership to:

• Assess your level of maturity so you can evolve your software
security journey in stages, first building a strong emerging
foundation, then maturing the more complex activities over time.

• Communicate your software security posture to customers,
partners, executives, and regulators. A scorecard helps everyone
understand where you are in your journey and where you want to
go when you’re explaining your strategic plan and budgets.

• See actual measurement data from the field. This helps in
building a long-term plan for an SSI and in tracking progress
against that plan.

In addition to being a lens on the state of software security, the
BSIMM serves as a measuring stick to determine where your SSI
currently stands relative to the community, whether as a whole or for
specific verticals. For example, a direct comparison of your efforts
across all 125 activities to the BSIMM13 scorecard for the entire
community (see Appendix D) is probably the best first step. Follow
the steps below to use the BSIMM to create your own SSI scorecard
(see Figure 3 for an example).

Understand Your Organizational Mandate
• Decide what the SSI intends to accomplish. Who are the executive

sponsors, and what resources are they expected to provide? From
a RACI perspective, who are the responsible and accountable
stakeholders? What metrics must be provided to executive
management to demonstrate acceptable progress?

• Set the proper scope for the SSI. At a high level, describe the
applicable software portfolio and the associated software
ownership (e.g., risk managers). Ensure that you include all
applications and related software that’s in the SSG’s remit.

Build the Scorecard
• Make a list of stakeholders to interview. No single person knows

everything about a modern SSI, so ensure that you have broad
coverage across the SSG, satellite (your champions), engineering,
QA, operations, and security testing. As needed, extend the
stakeholder list to include teams from reliability, cloud, privacy,
training, infrastructure, and others whose efforts have a direct
impact on software security.

• Understand the BSIMM. Review the BSIMM activities and gain
an understanding of the practices, the individual activities, and
the themes that run through them. For example, the activities for
software security testing appear across multiple BSIMM practices.

• Interview everyone and consolidate the results. Keep interviews
brief and focused but ensure that you get the data and artifacts
that demonstrate the organization is sufficiently—in both depth
and breadth—performing each activity before you award credit.

• Create your scorecard. Use a binary one or zero, a scale of
low, medium, and high, or even a graduated scale such as a
percentage to combine aspects of depth, breadth, and maturity.

Make a Strategic Plan and Execute
• Compare your scorecard to your stakeholders’ realistic

expectations. Prioritize effort on the important gaps as well as
those gaps with a long lead time. See Appendix B for more details
on how to build an execution plan. Mark your calendar to revisit
the scorecard in 12 to 18 months, document your progress, and
create a new scorecard.

• Define and use metrics to gauge progress. Every program needs a
barometer for success, and each organization finds different things
to be the best indicators for them. Whether described as metrics,
KPIs, KRIs, SLOs, or something else, use what works best for you.

For most organizations, a single aggregated scorecard covering
the entire SSI will suffice to inform future planning. In some cases,
however, it will be beneficial to create individual scorecards for the
SSG and for business units or application teams that have varying
software security approaches or maturity levels.

Figure 3 depicts an example firm that performs 41 BSIMM13
activities (noted as 1s in its EXAMPLEFIRM scorecard columns,
e.g., SM1.1), including nine activities that are the most common
in their respective practices (orange, e.g., CP1.2). Note the firm
does not perform the most observed activities in the other three
practices (gray boxes, e.g., SM1.4) and should take some time to
determine whether these are necessary or useful to its overall SSI.
The BSIMM13 FIRMS columns show the number of observations
(currently out of 130) for each activity, allowing the firm to understand
the activity’s general popularity within the current community. If you
want to evaluate your scorecard against a particular vertical, refer to
Appendix E.

Once you have determined where you stand with activities compared
to your expectations, you can devise a plan for improvement.
Organizations almost always choose some hybrid of expanding their
SSI with new activities and scaling some existing activities across
more of the software portfolio and stakeholder teams.

Note that there’s no inherent reason to adopt all activities in each
practice. Prioritize the ones that make sense for your organization
today and set aside those that don’t—but revisit those choices
periodically. Once they’ve adopted an activity set, most organizations
strategically work on the depth, breadth, and cost-effectiveness (e.g.,
via automation) of each activity in accordance with their view of the
risk management efforts required in their environments for their
business objectives.

To help refine the current and future activity prioritization for your
SSI, you can go beyond the AllFirms data in Appendix D, Figure 17
and analyze how SSIs evolve with remeasurements (Appendix F) and
with age (Appendix H). You can also examine what’s different about
your vertical or verticals (Appendix E) and understand the impact of a
champions program (Appendix G) on SSIs.

24 BSIMM FOUNDATIONS REPORT – VERSION 13

FIGURE 3. BSIMM13 EXAMPLEFIRM SCORECARD. A scorecard helps everyone understand the software security efforts that are currently underway. It also helps
organizations make comparisons to the community and serves as a guide on where to focus next.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM13

FIRMS
(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

EXAMPLE
FIRM ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

EXAMPLE
FIRM

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 98 1 [AM1.2] 80 [AA1.1] 113 1 [PT1.1] 114

[SM1.3] 82 [AM1.3] 42 [AA1.2] 53 1 [PT1.2] 102 1

[SM1.4] 117 [AM1.5] 76 1 [AA1.4] 69 [PT1.3] 88 1

[SM2.1] 73 [AM2.1] 16 [AA2.1] 31 [PT2.2] 38

[SM2.2] 63 [AM2.2] 11 1 [AA2.2] 32 1 [PT2.3] 45

[SM2.3] 69 [AM2.5] 16 1 [AA2.4] 38 1 [PT3.1] 26 1

[SM2.6] 71 [AM2.6] 16 [AA3.1] 20 [PT3.2] 15

[SM2.7] 64 1 [AM2.7] 14 [AA3.2] 4

[SM3.1] 27 [AM3.1] 9 [AA3.3] 15

[SM3.2] 18 [AM3.2] 5

[SM3.3] 26 [AM3.3] 11

[SM3.4] 5

[SM3.5] 0

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 101 1 [SFD1.1] 104 1 [CR1.2] 83 1 [SE1.1] 87

[CP1.2] 115 1 [SFD1.2] 90 1 [CR1.4] 107 1 [SE1.2] 115 1

[CP1.3] 98 1 [SFD2.1] 39 [CR1.5] 62 [SE1.3] 79 1

[CP2.1] 58 [SFD2.2] 64 [CR1.7] 54 [SE2.2] 57 1

[CP2.2] 59 [SFD3.1] 17 [CR2.6] 28 1 [SE2.4] 39

[CP2.3] 73 [SFD3.2] 18 [CR2.7] 20 [SE2.5] 52 1

[CP2.4] 62 [SFD3.3] 7 [CR2.8] 34 1 [SE2.7] 42 1

[CP2.5] 82 1 [CR3.2] 14 [SE3.2] 19

[CP3.1] 30 [CR3.3] 8 [SE3.3] 11

[CP3.2] 28 [CR3.4] 2 [SE3.6] 18

[CP3.3] 11 [CR3.5] 3 [SE3.8] 0

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 71 1 [SR1.1] 96 1 [ST1.1] 108 1 [CMVM1.1] 114 1

[T1.7] 58 1 [SR1.2] 101 [ST1.3] 97 1 [CMVM1.2] 100

[T1.8] 53 [SR1.3] 103 1 [ST1.4] 56 [CMVM2.1] 95 1

[T2.5] 38 [SR2.2] 80 1 [ST2.4] 25 [CMVM2.2] 98

[T2.8] 28 1 [SR2.4] 92 [ST2.5] 31 [CMVM2.3] 62

[T2.9] 33 1 [SR2.5] 63 1 [ST2.6] 21 [CMVM3.1] 11

[T2.10] 28 [SR2.7] 53 [ST3.3] 12 [CMVM3.2] 19

[T2.11] 27 [SR3.2] 19 [ST3.4] 4 [CMVM3.3] 18

[T3.1] 9 [SR3.3] 17 [ST3.5] 4 [CMVM3.4] 26 1

[T3.2] 16 [SR3.4] 19 [ST3.6] 3 [CMVM3.5] 13 1

[T3.5] 22 [CMVM3.6] 3

[T3.6] 7 [CMVM3.7] 20

[CMVM3.8] 0

25 BSIMM FOUNDATIONS REPORT – VERSION 13

ROLES IN A SOFTWARE SECURITY
INITIATIVE
Determining the right activities to focus on and clarifying who is
responsible for their implementation are important parts of making
any SSI work. That means putting people in leadership roles and
giving them clear responsibilities and objectives.

From our work with 254 BSIMM participants since 2008, we’ve
observed the following software security roles and responsibilities
being important across a wide variety of organizations of different
sizes, in different verticals, and with both large and small remits (e.g.,
application portfolio size):

• Executive leadership. As an SSI takes shape and requires
dedicated resources, it also requires an executive sponsor to
own the initiative, define objectives, provide budget and people,
and ensure progress. Executive leadership must help translate
business objectives into security objectives in one direction and
help translate security data into risk data in the other.

• SSG leader. An SSI looking to grow needs an SSG dedicated to
scaling the program across the organization. The SSG leader and
their team must execute on the security objectives across an
array of stakeholders, including development, QA, and operations.
This will require starting and maturing software capabilities such
as defect discovery and management, software supply chain
security, training, and telemetry and metrics.

• Satellite (security champions). Very few SSGs can become
large enough to do their business-as-usual tasks and also be
responsive to all stakeholders all the time. A security champions
group is an effective way to scale SSG reach by embedding
trained experts in stakeholder business processes. Security
champions take on tasks such as running security tools and
doing testing results triage, on-demand training, research on
complicated security issues, and ensuring that software security
checkpoints are passed successfully.

• Architects and developers. Even the best policy and process
can’t guarantee secure software. People designing and coding
software must practice good security engineering, follow
designated procedures for responding to discovered security
issues, and collaborate actively with other stakeholders.
Architects and developers are often a source of innovation in
security integration and as-code improvements, so it’s important
to share these ideas broadly.

• QA teams. Code functionality is obviously critical to
organizational success, but getting QA teams to include security
tests in their automated suites provides an easy way to expand
the search for security defects. QA teams can also be a source
of innovation for automating security tests in preproduction
environments.

• Operations and administration. Even the most secure code
can be undermined by poor host, network, cloud, or other
configurations and administration. Operations teams have an
opportunity to ensure that configurations, administration, access
controls, logging, monitoring, and as-code efforts support
software security objectives.

• Data privacy. Specialists can help ensure that regulations, laws,
contracts, and client expectations are translated into software
requirements.

Refer to Appendix A for more details on roles and responsibilities.

Determining the right activities
to focus on and clarifying who is
responsible for their implementation
are important parts of making any
SSI work.

26 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 5:
THE BSIMM
FRAMEWORK

27 BSIMM FOUNDATIONS REPORT – VERSION 13

THE BSIMM FRAMEWORK

Most of the BSIMM will likely fit perfectly for your
SSI, but some parts might feel a little less applicable.
Understanding the model allows you to both learn
from others and ensure that your program is right for
your organization.

We built the first version of the BSIMM nearly 14 years ago (late
2008) as follows:

• We relied on our own knowledge of software security practices to
create the initial SSF.

• We conducted a series of in-person interviews with nine
executives in charge of SSIs. From these interviews, we identified
a set of 110 software security activities that we organized
according to the SSF.

• We then created scorecards for each of the nine initiatives that
showed which of the activities each initiative carried out. To
validate our work, we asked each participating firm to review the
SSF, practices, activities, and the scorecard we created for their
initiative, then we made necessary adjustments based on their
feedback.

Today, we continue to do BSIMM assessments with in-person
interviews whenever possible, which we’ve done with a total of
254 firms so far. In addition, we’ve conducted assessments for 14
organizations that have rejoined the community after aging out. In
43 cases, we assessed both the SSG and one or more business units
as part of creating an aggregated SSI view for a firm. We evolve the
model by digging for new kinds of efforts during assessments—
both as new participants join and as current participants are

remeasured—and then adding new activities when warranted,
and we’ve added 16 since 2008. We also adjust the positioning of
activities in the model practices according to their observation rates.

CORE KNOWLEDGE
The BSIMM core knowledge encompasses the activities we have
directly observed in the BSIMM community—the group of firms that
participate in using the BSIMM as part of their SSI management. We
organize that core knowledge into an SSF, represented in Figure 4.
The SSF is organized into four domains—Governance, Intelligence,
SSDL Touchpoints, and Deployment—with those domains containing
the 125 BSIMM13 activities.

From an executive perspective, you can view BSIMM activities as
controls implemented in a software security risk management
framework. The implemented activities might function as preventive,
detective, corrective, or compensating controls in your SSI.
Positioning the activities as controls allows for easier understanding
of the BSIMM’s value by governance, risk, compliance, legal, audit,
and other risk management groups.

We divide activities into levels per practice based on the frequency
with which they’re observed in the community. We do this to help
organizations quickly understand whether the activity they’re
contemplating is common or uncommon across other organizations.
Level 1 activities (often straightforward and universally applicable)
are those that are most observed across the community of 130
firms, level 2 (often more difficult to implement and requiring more
coordination) are less frequently observed, and level 3 activities
(usually more difficult to implement and not always applicable) are
more rarely observed. Note that new activities are added at level 3
because we don’t yet know how common they are, so they start with
zero observations.

DOMAINS

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

Practices that help organize,
manage, and measure a software
security initiative. Staff development
is also a central governance practice.

Practices that result in collections
of corporate knowledge used in
carrying out software security
activities throughout the
organization. Collections include
both proactive security guidance and
organizational threat modeling.

Practices associated with analysis
and assurance of particular
software development artifacts and
processes. All software security
methodologies include these
practices.

Practices that interface with
traditional network security and
software maintenance organizations.
Software configuration, maintenance,
and other environment issues have
direct impact on software security.

PRACTICES

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

1. Strategy & Metrics (SM)

2. Compliance & Policy (CP)

3. Training (T)

4. Attack Models (AM)

5. Security Features & Design (SFD)

6. Standards & Requirements (SR)

7. Architecture Analysis (AA)

8. Code Review (CR)

9. Security Testing (ST)

10. Penetration Testing (PT)

11. Software Environment (SE)

12. Configuration Management
& Vulnerability Management
(CMVM)

FIGURE 4. THE SOFTWARE SECURITY FRAMEWORK. Twelve practices align with the four high-level domains and contain the 125 BSIMM13 activities.

28 BSIMM FOUNDATIONS REPORT – VERSION 13

UNDERSTANDING THE MODEL
A domain, such as Governance, contains practices, such as Strategy
& Metrics, each of which contains activities that each have a detailed
description. Creating a scorecard (e.g., activity SM1.1 was observed
and is marked with a “1”) informs decisions about strategic change.

GOVERNANCE

1. Strategy & Metrics (SM)

2. Compliance & Policy (CP)

3. Training (T)

GOVERNANCE

STRATEGY & METRICS
[SM1.1] Publish process and evolve as necessary. [SM2.7] Create evangelism role and perform internal marketing.

[SM1.3] Educate executives on software security. [SM3.1] Use a software asset tracking application with portfolio view.

[SM1.4] Implement security checkpoints and associated governance. [SM3.2] Make SSI efforts part of external marketing.

[SM2.1] Publish data about software security internally and use it to
drive change. [SM3.3] Identify metrics and use them to drive resourcing.

[SM2.2] Enforce security checkpoints and track exceptions. [SM3.4] Integrate software-defined lifecycle governance.

[SM2.3] Create or grow a satellite (security champions). [SM3.5] Integrate software supply chain risk management.

[SM2.6] Require security sign-off prior to software release.

GOVERNANCE

ACTIVITY BSIMM13 FIRMS
(OUT OF 130) EXAMPLE FIRM

STRATEGY & METRICS
[SM1.1] 98 1

[SM1.3] 82

[SM1.4] 117

[SM2.1] 73

[SM2.2] 63

[SM2.3] 69

[SM2.6] 71

[SM2.7] 64 1

[SM3.1] 27

[SM3.2] 18

[SM3.3] 26

[SM3.4] 5

[SM3.5] 0

[SM2.2: 63]
Enforce security checkpoints and track exceptions.

Enforce security release conditions at each checkpoint (gate, guardrail,
milestone, etc.) for every project, so that each project must either
meet an established measure or follow a defined process for obtaining
an exception to move forward. Use internal policies and standards,
regulations, contractual agreements, and other obligations to define
release conditions, then track all exceptions. Verifying conditions yields
data that informs the KRIs and any other metrics used to govern the
process. Automatically giving software a passing grade or granting
exceptions without due consideration defeats the purpose of verifying
conditions. Even seemingly innocuous software projects (e.g., small
code changes, infrastructure access control changes, deployment
blueprints) must successfully satisfy the prescribed security
conditions as they progress through the software lifecycle. Similarly,
APIs, frameworks, libraries, bespoke code, microservices, container
configurations, and so on are all software that must satisfy security
release conditions. It’s possible, and often very useful, to have verified
the conditions both before and after the development process itself.
In modern development environments, the verification process will
increasingly become automated.

29 BSIMM FOUNDATIONS REPORT – VERSION 13

PART 6:
THE BSIMM
ACTIVITIES

30 BSIMM FOUNDATIONS REPORT – VERSION 13

[SM1.1: 98] Publish process and evolve as necessary.
The process for addressing software security is defined, published
internally, and broadcast to all stakeholders so that everyone knows
the plan. Goals, roles, responsibilities, and activities are explicitly
defined. Most organizations examine existing methodologies, such
as the NIST SSDF, Microsoft SDL, or Synopsys Touchpoints, then
tailor them to meet their needs. Security activities will be adapted to
software lifecycle processes (e.g., waterfall, Agile, CI/CD, DevOps),
so activities will evolve with both the organization and the security
landscape. The process doesn’t need to be publicly promoted outside
the firm to have the desired impact (see [SM3.2]). In addition to
publishing the written process, some firms also automate parts (e.g.,
a testing strategy) as governance-as-code (see [SM3.4]).

[SM1.3: 82] Educate executives on software security.
Executives are regularly shown the ways malicious actors attack
software and the negative business impacts those attacks can
have on the organization. Go beyond reporting of open and closed
defects to educate executives on the business risks, including risks
of adopting emerging engineering technologies and methodologies
without security oversight. Demonstrate a worst-case scenario in
a controlled environment with the permission of all involved (e.g.,
by showing attacks and their business impact). Presentation to the
Board can help garner resources for new or ongoing SSI efforts.
Demonstrating the need for new skill-building training in evolving
areas, such as DevOps groups using cloud-native technologies, can
help convince leadership to accept SSG recommendations when
they might otherwise be ignored in favor of faster release dates or
other priorities. Bring in an outside expert when necessary to bolster
executive attention.

[SM1.4: 117] Implement security checkpoints and
associated governance.

The software security process includes checkpoints (such as gates,
release conditions, guardrails, milestones, etc.) at one or more
points in a software lifecycle. The first two steps toward establishing
security-specific checkpoint conditions are to identify process
locations that are compatible with existing development practices
and to then begin gathering the information necessary to make a
go/no-go decision, such as risk-ranking thresholds or defect data.
Importantly, the conditions need not be enforced at this stage—for
example, the SSG can collect security testing results for each
project prior to release, then provide their informed opinion on what
constitutes sufficient testing or acceptable test results without trying
to stop a project from moving forward (see [SM2.2]). Shorter release
cycles might require creative approaches to collecting the right
evidence and rely heavily on automation. Socializing the conditions
and then enforcing them once most project teams already know
how to succeed is a gradual approach that motivates good behavior
without introducing unnecessary friction.

[SM2.1: 73] Publish data about software security internally
and use it to drive change.
To facilitate improvement, data is published internally about the state
of software security within the organization. Produce security or
development dashboards with metrics for executives and software
development management. Dashboards can be part of pipeline
toolchains to enable developer self-improvement. Sometimes, this
published data won’t be shared with everyone in the firm but only

THE BSIMM ACTIVITIES

The BSIMM activities are the individual controls used
to construct or improve an SSI. They range through
people, process, technology, and culture. You can use
this information to choose which controls to apply
within your initiative, then align your implementation
strategy and metrics with your desired outcomes.

The BSIMM framework comprises four domains—Governance,
Intelligence, SSDL Touchpoints, Deployment—and those domains
contain 12 practices, such as Strategy & Metrics, Attack Models, and
Code Review, which each contain activities. These activities are the
BSIMM building blocks, the smallest unit of software security
granularity implemented to build SSIs. Rather than prescriptively
dictating a set of best practices, the BSIMM descriptively observes,
quantifies, and documents the actual activities carried out by various
kinds of SSIs across diverse organizations.

ACTIVITIES IN THE BSIMM
The BSIMM is a data-driven model that evolves over time. Over the
years, we have added, deleted, and adjusted the levels of various
activities based on the data observed throughout the BSIMM’s
evolution. When considering whether to add a new activity, we
analyze whether the effort we’re observing is truly new to the model
or simply a variation on an existing activity. Similarly, for deciding
whether to move an activity between levels within a practice, we use
the results of an intra-level standard deviation analysis and the trend
in observation counts.

Each activity has a unique label and name—for example, activity
SM1.4 is in the Strategy & Metrics practice and is named Implement
security checkpoints and associated governance. To preserve
backward compatibility, we make all changes by adding new activity
labels to the model, even when an activity has simply changed levels
within a practice (as an example, we would add a new CR#.# label for
both new and moved activities in the Code Review practice).

BSIMM activity levels distinguish the frequency with which activities
are observed in the participating organizations. As seen in Part
5, frequently observed activities are designated level 1, with less
frequent and infrequently observed activities designated as levels 2
and 3, respectively. Using SM1.4 as an example again, we see that
it is a frequently observed activity in the Strategy & Metrics practice.
Note that the new activities we add to the model start with zero
observations and are therefore always added at level 3.

GOVERNANCE

Governance: Strategy & Metrics (SM)
The Strategy & Metrics practice encompasses planning, assigning
roles and responsibilities, identifying software security goals,
determining budgets, and identifying metrics and software release
conditions.

Top 10 Activity
in BSIMM13

New Activity
in BSIMM13

31 BSIMM FOUNDATIONS REPORT – VERSION 13

with the stakeholders who are tasked to drive change. In other cases,
open book management and data published to all stakeholders helps
everyone know what’s going on. If the organization’s culture promotes
internal competition between groups, use this information to add
a security dimension. Integrate automated security telemetry to
gather measurements quickly and accurately to increase timeliness
of security data in areas such as speed (e.g., time to fix) and quality
(e.g., defect density). Publishing data about new technologies (e.g.,
security and risk in cloud-native architectures) is important for
identifying needed improvements.

[SM2.2: 63] Enforce security checkpoints and track
exceptions.
Enforce security release conditions at each checkpoint (gate, guardrail,
milestone, etc.) for every project, so that each project must either meet
an established measure or follow a defined process for obtaining
an exception to move forward. Use internal policies and standards,
regulations, contractual agreements, and other obligations to define
release conditions, then track all exceptions. Verifying conditions yields
data that informs the KRIs and any other metrics used to govern the
process. Automatically giving software a passing grade or granting
exceptions without due consideration defeats the purpose of verifying
conditions. Even seemingly innocuous software projects (e.g., small
code changes, infrastructure access control changes, deployment
blueprints) must successfully satisfy the prescribed security
conditions as they progress through the software lifecycle. Similarly,
APIs, frameworks, libraries, bespoke code, microservices, container
configurations, and so on are all software that must satisfy security
release conditions. It’s possible, and often very useful, to have verified
the conditions both before and after the development process itself.
In modern development environments, the verification process will
increasingly become automated (see [SM3.4]).

[SM2.3: 69] Create or grow a satellite (security champions).
Form a collection of people scattered across the organization—a
satellite—who show an above-average level of security interest or
skill and who contribute software security expertise to development,
QA, and operations teams. Forming this social network of advocates,
sometimes referred to as champions, is a good step toward scaling
security into software engineering. One way to build the initial group
is to track the people who stand out during introductory training
courses (see [T3.6]). Another way is to ask for volunteers. In a more
top-down approach, initial satellite membership is assigned to ensure
good coverage of development groups, but ongoing membership is
based on actual performance. The satellite can act as a sounding
board for new projects and, in new or fast-moving technology areas,
help combine software security skills with domain knowledge
that might be under-represented in the SSG or engineering teams.
Agile coaches, scrum masters, and DevOps engineers can make
particularly useful satellite members, especially for detecting and
removing process friction. In some environments, satellite-led efforts
are being delivered via automation.

[SM2.6: 71] Require security sign-off prior to software
release.
The organization has an initiative-wide process for documenting
accountability and accepting security risk by having a risk owner
sign off on the state of all software prior to release based on SSG-
approved criteria. The sign-off policy might, for example, also require

the accountable person to acknowledge critical vulnerabilities that
have not been mitigated or SSDL steps that have been skipped.
Informal or uninformed risk acceptance alone isn’t a security
sign-off because the act of accepting risk is more effective when it’s
formalized (e.g., with a signature, a form submission, or something
similar) and captured for future reference. Similarly, simply stating
that certain projects don’t need sign-off at all won’t achieve the
desired risk management results. In some cases, however, the risk
owner can provide the sign-off on a particular set of software project
acceptance criteria, which are then implemented in automation
to provide governance-as-code (see [SM3.4]), but there must be
an ongoing verification that the criteria remain accurate, and the
automation is working.

[SM2.7: 64] Create evangelism role and perform internal
marketing.
Build support for software security throughout the organization
via ongoing evangelism. This internal marketing function, often
performed by a variety of stakeholder roles, keeps executives
and others up to date on the magnitude of the software security
problem and the elements of its solution. A scrum master familiar
with security, for example, could help teams adopt better software
security practices as they transform to Agile and DevOps methods.
Similarly, a cloud expert could demonstrate the changes needed
in security architecture and testing for serverless applications.
Evangelists can increase understanding and build credibility by giving
talks to internal groups (including executives), publishing roadmaps,
authoring technical papers for internal consumption, or creating
a collection of papers, books, and other resources on an internal
website (see [SR1.2]) and promoting its use. In turn, organizational
feedback becomes a useful source of improvement ideas.

[SM3.1: 27] Use a software asset tracking application with
portfolio view.
The SSG uses centralized tracking automation to chart the progress
of every piece of software and deployable artifact from creation to
decommissioning, regardless of development methodology. The
automation records the security activities scheduled, in progress,
and completed, incorporating results from SSDL activities even
when they happen in a tight loop or during deployment. The
combined inventory and security posture view enables timely
decision-making. The SSG uses the automation to generate
portfolio reports for multiple metrics and, in many cases, publishes
this data at least among executives. As an initiative matures and
activities become more distributed, the SSG uses the centralized
reporting system to keep track of all the moving parts.

[SM3.2: 18] Make SSI efforts part of external marketing.
To build external awareness, the SSG helps market the SSI beyond
internal teams. In this way, software security can grow its risk
reduction exercises into a competitive advantage or market
differentiator. The SSG might publish papers or books about its
software security capabilities or have a public blog. It might provide
details at external conferences or trade shows. In some cases,
a complete SSDL methodology can be published and promoted
outside the firm, and governance-as-code concepts can make
interesting case studies. Regardless of method, the process of
sharing details externally and inviting critique is used to bring new
perspectives into the firm.

32 BSIMM FOUNDATIONS REPORT – VERSION 13

[SM3.3: 26] Identify metrics and use them to drive
resourcing.
The SSG and its management identify metrics that define and
measure SSI progress in quantitative terms. These metrics are
reviewed on a regular basis and drive the initiative’s budgeting
and resource allocations, so simple counts and out-of-context
measurements won’t suffice here. On the technical side, one such
metric could be defect density, a reduction of which could be used
to show a decreasing cost of remediation over time, assuming, of
course, that testing depth has kept pace with software changes.
Data for metrics is best collected early and often using event-driven
processes with telemetry rather than calendar-driven data collection.
The key is to tie security results to business objectives in a clear and
obvious fashion to justify resourcing. Because the concept of security
is already tenuous to many businesspeople, make the tie-in explicit.

[SM3.4: 5] Integrate software-defined lifecycle governance.
Organizations begin replacing traditional document-, presentation-,
and spreadsheet-based lifecycle management with software-based
delivery platforms. For some software lifecycle phases, humans
are no longer the primary drivers of progression from one phase
to the next. Instead, organizations rely on automation to drive the
management and delivery process with software such as Spinnaker
or GitHub, and humans participate asynchronously (and often
optionally). Automation often extends beyond the scope of CI/
CD to include functional and nonfunctional aspects of delivery,
such as health checks, cut-over on failure, rollback to known-good
state, defect discovery and management, compliance verification,
and a way to ensure adherence to policies and standards. Some
organizations are also evolving their lifecycle management approach
by integrating their compliance and defect discovery data, perhaps
augmented by intelligence feeds and other external data, to begin
moving from a series of point-in-time go/no-go decisions (e.g.,
release conditions) to a future state of continuous accumulation of
assurance data (see [CMVM3.6]).

[SM3.5: 0] Integrate software supply chain risk
management.

Organizational risk management processes ensure that important
software created by and entering the organization is managed
through governance-driven access and usage controls, maintenance
standards, and captured provenance data. Apply these processes to
external (see [SR2.7]), bespoke, and internally developed software,
helping to ensure that deployed code has the expected components
(see [SE3.8]). The lifecycle management for all software, from
creation or importation through secure deployment, ensures that all
access, usage, and modifications are done in accordance with policy.
This assurance is easier to implement at scale using automation in
software lifecycle processes (see [SM3.4]).

Governance: Compliance & Policy (CP)
The Compliance & Policy practice is focused on identifying controls
for compliance regimens such as PCI DSS and GDPR, developing
contractual controls such as SLAs to help manage COTS software
risk, setting organizational software security policy, and auditing
against that policy.

[CP1.1: 101] Unify regulatory pressures.
Have a central team to understand the constraints imposed on
software security by regulatory or compliance drivers applicable to
the organization and its customers. The team creates or collaborates
on a unified approach that removes redundancy and conflicts from
overlapping compliance requirements, such as from PCI security
standards; GLBA, SOX, and HIPAA in the US; or GDPR in the EU.
A formal approach will map applicable portions of regulations
to controls (see [CP2.3]) applied to software to explain how the
organization complies. Existing business processes run by legal,
product management, or other risk and compliance groups outside
the SSG could serve as the regulatory focal point, with the SSG
providing software security knowledge. A unified set of software
security guidance for meeting regulatory pressures ensures that
compliance work is completed as efficiently as possible.

[CP1.2: 115] Identify privacy obligations.

The SSG identifies privacy obligations stemming from regulation and
customer expectations, then translates these obligations into both
software requirements and privacy best practices. The way software
handles PII might be explicitly regulated, but even if it isn’t, privacy is
an important topic. For example, if the organization processes credit
card transactions, the SSG will help in identifying the constraints
that the PCI DSS places on the handling of cardholder data and will
inform all stakeholders (see [SR1.3]). Note that outsourcing to hosted
environments (e.g., the cloud) doesn’t relax privacy obligations
and can even increase the difficulty of recognizing and meeting all
associated needs. Also note that firms creating software products
that process PII when deployed in customer environments might
meet this need by providing privacy controls and guidance for their
customers. Evolving consumer privacy expectations, the proliferation
of “software is in everything,” and data scraping and correlation (e.g.,
social media) add additional expectations for PII protection.

[CP1.3: 98] Create policy.
The SSG guides the organization by creating or contributing to
a software security policy that satisfies internal, regulatory, and
customer-driven security requirements. This policy is what is
permitted and denied at the initiative level—if it’s not mandatory and
enforced, it’s not policy. It includes a unified approach for satisfying
the (potentially lengthy) list of security drivers at the governance
level so project teams can avoid keeping up with the details involved
in complying with all applicable regulations or other mandates.
Likewise, project teams won’t need to relearn customer security
requirements on their own. Architecture standards and coding
guidelines aren’t examples of policy, but policy that prescribes and
mandates their use for certain software categories falls under that
umbrella. In many cases, policy statements are translated into
automation to provide governance-as-code. Even if not enforced by
humans, policy that’s been automated must still be mandatory. In
some cases, policy will be documented exclusively as governance-
as-code (see [SM3.4]), often as tool configuration, but it must still be
readily readable, auditable, and editable by humans.

[CP2.1: 58] Build a PII inventory.
The organization identifies and tracks the kinds of PII processed
or stored by each of its systems, along with their associated data

33 BSIMM FOUNDATIONS REPORT – VERSION 13

repositories. In general, simply noting which applications process
PII isn’t enough—the type of PII (e.g., PHI, PFI, PI, etc.) and where it
is stored are necessary so the inventory can be easily referenced in
critical situations. This usually includes making a list of databases that
would require customer notification if breached or a list to use in crisis
simulations (see [CMVM3.3]). Build the PII inventory by starting with
each individual application and noting its PII use, or by starting with
PII types and noting the applications that touch each type. System
architectures have evolved such that PII will flow into cloud-based
service and endpoint device ecosystems, then come to rest there
(e.g., content delivery networks, social networks, mobile devices, IoT
devices), making it tricky to keep an accurate PII inventory.

[CP2.2: 59] Require security sign-off for compliance-related
risk.
The organization has a formal compliance risk acceptance sign-off
and accountability process that addresses all software development
projects. In this process, the SSG acts as an advisor while the risk
owner signs off on the software’s compliance state prior to release
based on its adherence to documented criteria. The sign-off policy
might also require the head of the business unit to acknowledge
compliance issues that haven’t been mitigated or compliance-related
SSDL steps that have been skipped, but it is required even when no
compliance-related risk is present. Sign-off is explicit and captured
for future reference, with any exceptions tracked, even in automated
application lifecycle methodologies. Note that an application without
security defects might still be noncompliant, so clean security testing
results are not a substitute for a compliance sign-off. Even in DevOps
organizations where engineers have the technical ability to release
software, there is still a need for a deliberate risk acceptance step
even if the compliance criteria are embedded in automation (see
[SM3.4]). In cases where the risk owner signs off on a particular
set of compliance acceptance criteria that are then implemented in
automation to provide governance-as-code, there must be ongoing
verification that the criteria remain accurate, and the automation is
actually working.

[CP2.3: 73] Implement and track controls for compliance.
The organization can demonstrate compliance with applicable
requirements because its SSDL is aligned with the control statements
developed by the SSG in collaboration with compliance stakeholders
(see [CP1.1]). The SSG collaborates with stakeholders to track
controls, navigate problem areas, and ensure that auditors and
regulators are satisfied. The SSG can remain in the background
when the act of following the SSDL automatically generates the
desired compliance evidence predictably and reliably. Increasingly,
the DevOps approach embeds compliance controls in automation,
such as in software-defined infrastructure and networks, rather than
in human process and manual intervention. A firm doing this properly
can explicitly associate satisfying its compliance concerns with
following its SSDL.

[CP2.4: 62] Include software security SLAs in all vendor
contracts.
Software vendor contracts include an SLA to ensure that the vendor’s
security efforts align with the organization’s compliance story. Each
new or renewed contract contains provisions requiring the vendor to
address software security and deliver a product or service compatible
with the organization’s security policy. In some cases, open source

licensing concerns initiate the vendor management process, which can
open the door for additional software security language in the SLA (see
[SR2.5]). Typical provisions set requirements for policy conformance,
incident management, training, defect management, and response
times for addressing software security issues. Traditional IT security
requirements and a simple agreement to allow penetration testing or
another defect discovery activity aren’t sufficient here.

[CP2.5: 82] Ensure executive awareness of compliance and
privacy obligations.
Gain buy-in around compliance and privacy activities by providing
executives with plain-language explanations of the organization’s
compliance and privacy obligations, along with the potential
consequences of failing to meet those obligations. For some
organizations, explaining the direct cost and likely fallout from a
compliance failure or data breach can be an effective way to broach
the subject. For others, having an outside expert address the Board
works because some executives value an outside perspective more
than an internal one. A sure sign of proper executive buy-in is an
acknowledgment of the need along with adequate allocation of
resources to meet those obligations. Use the sense of urgency that
typically follows a compliance or privacy failure to build additional
awareness and bootstrap new efforts.

[CP3.1: 30] Document a software compliance story.
The SSG can demonstrate the organization’s software security
compliance story on demand using a combination of written policy,
controls documentation, and artifacts gathered through the SSDL.
Often, senior management, auditors, and regulators—whether
government or other—will be satisfied with the same kinds of reports
that can be generated directly from various tools. In some cases,
particularly where organizations leverage shared responsibility
through cloud services, the organization will require additional
information from vendors about how that vendor’s controls support
organizational compliance needs. It will often be necessary to
normalize information that comes from disparate sources.

[CP3.2: 28] Ensure compatible vendor policies.
Ensure that vendor software security policies and SSDL processes
are compatible with internal policies. Vendors likely comprise a
diverse group—cloud providers, middleware providers, virtualization
providers, container and orchestration providers, bespoke software
creators, contractors, and many more—and each might be held to
different policy requirements. Policy adherence enforcement might be
through a point-in-time review (such as ensuring acceptance criteria),
automated checks (such as those applied to pull requests, committed
artifacts like containers, or similar), or convention and protocol (such
as preventing services connection unless security settings are correct
and expected certificates are present). Evidence of vendor adherence
could include results from SSDL activities, from manual tests or tests
built directly into automation or infrastructure, or from other software
lifecycle instrumentation. For some policies or SSDL processes, vendor
questionnaire responses and attestation alone might be sufficient.

[CP3.3: 11] Drive feedback from software lifecycle data back
to policy.
Feed information from the software lifecycle into the policy creation
and maintenance process to drive improvements, such as defect
prevention and strengthening governance-as-code practices (see

34 BSIMM FOUNDATIONS REPORT – VERSION 13

[SM3.4]). With this feedback as a routine process, blind spots can
be eliminated by mapping them to trends in SSDL failures. Events
such as the regular appearance of inadequate architecture analysis,
recurring vulnerabilities, ignored security release conditions, or the
wrong vendor choice for carrying out a penetration test can expose
policy weakness (see [CP1.3]). As an example, lifecycle data might
indicate that policies impose too much bureaucracy by introducing
friction that prevents engineering from meeting the expected delivery
cadence. Rapid technology evolution might also create policy gaps
that must be addressed. Over time, policies become more practical
and easier to carry out (see [SM1.1]). Ultimately, policies are refined
with SSDL data to enhance and improve a firm’s effectiveness.

Governance: Training (T)
Training has always played a critical role in software security
because organizational stakeholders across GRC, legal, engineering,
operations, and other groups often start with little security
knowledge.

[T1.1: 71] Conduct software security awareness training.
To promote a culture of software security throughout the
organization, the SSG conducts periodic software security awareness
training. This training might be delivered via SSG members, an
outside firm, the internal training organization, or e-learning, but
course content isn’t necessarily tailored for a specific audience—
developers, QA engineers, and project managers could attend the
same “Introduction to Software Security” course, for example.
Augment this content with a tailored approach that addresses the
firm’s culture explicitly, which might include the process for building
security in, avoiding common mistakes, and technology topics such
as CI/CD and DevSecOps. Generic introductory courses that cover
basic IT or high-level security concepts don’t generate satisfactory
results. Likewise, awareness training aimed only at developers and
not at other roles in the organization is insufficient.

[T1.7: 58] Deliver on-demand individual training.
The organization lowers the burden on students and reduces the
cost of delivering software security training by offering on-demand
training for SSDL stakeholders. The most obvious choice, e-learning,
can be kept up to date through a subscription model, but an online
curriculum must be engaging and relevant to students in various
roles (e.g., developer, QA, cloud, ops, etc.) to achieve its intended
purpose. Ineffective (e.g., aged, off-topic) training or training that isn’t
used won’t create any change. Hot topics like containerization and
security orchestration, and new delivery styles such as gamification,
will attract more interest than boring policy discussions. For
developers, it’s possible to provide training directly through the IDE
right when it’s needed, but in some cases, building a new skill (such
as cloud security or threat modeling) might be better suited for
instructor-led training, which can also be provided on demand.

[T1.8: 53] Include security resources in onboarding.
The process for bringing new hires into a software engineering
organization requires timely completion of a training module about
software security. While the generic new hire process usually covers
topics like picking a good password and avoiding phishing, this
orientation period is enhanced to cover topics such as how to create,
deploy, and operate secure code, the SSDL, security standards (see
[SR1.1]), and internal security resources (see [SR1.2]). The objective is

to ensure that new hires contribute to the security culture as soon as
possible. Although a generic onboarding module is useful, it doesn’t
take the place of a timely and more complete introductory software
security course.

[T2.5: 38] Enhance satellite (security champions) through
training and events.
Strengthen the satellite network (see [SM2.3]) by inviting guest
speakers or holding special events about advanced software security
topics. This effort is about providing to the satellite customized
training (e.g., the latest software security techniques for DevOps or
serverless technologies, or on the implications of new policies and
standards) so that it can fulfill its assigned responsibilities—it’s not
about inviting satellite members to routine brown bags or signing
them up for standard computer-based training. Similarly, a standing
conference call with voluntary attendance won’t get the desired
results, which are as much about building camaraderie as they are
about sharing knowledge and organizational efficiency. Regular
events build community and facilitate collaboration and collective
problem-solving. Face-to-face meetings are by far the most effective,
even if they happen only once or twice a year and even if some
participants must attend by videoconferencing. In teams with many
geographically dispersed and work-from-home members, simply
turning on cameras and ensuring that everyone gets a chance to
speak makes a substantial difference.

[T2.8: 28] Create and use material specific to company
history.
To make a strong and lasting change in behavior, training includes
material specific to the company’s history of software security
challenges. When participants can see themselves in a problem,
they’re more likely to understand how the material is relevant to
their work as well as when and how to apply what they’ve learned.
One way to do this is to use noteworthy attacks on the company’s
software as examples in the training curriculum. Both successful and
unsuccessful attacks, as well as notable results from penetration
tests and red team exercises, can make good teachable moments.
Stories from company history can help steer training in the right
direction, but only if those stories are still relevant and not overly
censored. This training should cover platforms used by developers
(developers orchestrating containers probably won’t care about
old virtualization problems) and problems relevant to languages in
common use.

[T2.9: 33] Deliver role-specific advanced curriculum.
Software security training goes beyond building awareness (see
[T1.1]) by enabling students to incorporate security practices into
their work. This training is tailored to cover the tools, technology
stacks, development methodologies, and issues that are most
relevant to students. An organization could offer tracks for its
engineers, for example, one each for architects, developers,
operations, DevOps, site reliability engineers, and testers. Tool-
specific training is also commonly needed in such a curriculum.
While it might be more concise than engineering training, role-
specific training is also necessary for many stakeholders within an
organization, including product management, executives, and others.
In any case, the training must be taken by a broad enough audience
to build the collective skillsets required.

35 BSIMM FOUNDATIONS REPORT – VERSION 13

[T2.10: 28] Host software security events.
The organization hosts security events featuring external speakers
and content in order to strengthen its security culture. Good
examples of such events are Intel iSecCon and AWS re:Inforce, which
invite all employees, feature external presenters, and focus on helping
engineering create, deploy, and operate better code. Employees
benefit from hearing outside perspectives, especially those related to
fast-moving technology areas with software security ramifications,
and the organization benefits from putting its security credentials
on display (see [SM3.2]). Events open only to small, select groups,
or simply putting recordings on an internal portal, won’t result in the
desired culture change across the organization.

[T2.11: 27] Require an annual refresher.
Everyone involved in the SSDL is required to take an annual
software security refresher course. This course keeps the staff
up to date on the organization’s security approach and ensures
that the organization doesn’t lose focus due to turnover, evolving
methodologies, or changing deployment models. The SSG might give
an update on the security landscape and explain changes to policies
and standards. A refresher could also be rolled out as part of a firm-
wide security day or in concert with an internal security conference.
Coverage of new topics and changes to the previous year’s content
should result in a significant amount of fresh content.

[T3.1: 9] Reward progression through curriculum.
Progression through the security curriculum brings personal benefits,
such as public acknowledgement or career advancement. The
reward system can be formal and lead to a certification or an official
mark in the human resources system, or it can be less formal and
include motivators such as documented praise at annual review time.
Involving a corporate training department and human resources
team can make the impact of improving security skills on career
progression more obvious, but the SSG should continue to monitor
security knowledge in the firm and not cede complete control or
oversight. Coffee mugs and t-shirts can build morale, but it usually
takes the possibility of real career progression to change behavior.

[T3.2: 16] Provide training for vendors and outsourced
workers.
Vendors and outsourced workers receive the same level of
software security training given to employees. Spending time and
effort helping suppliers get security right at the outset is much
easier than trying to determine what went wrong later, especially
if the development team has moved on to other projects. Training
individual contractors is much more natural than training entire
outsourced firms and is a reasonable place to start. It’s important
that everyone who works on the firm’s software has an appropriate
level of training that increases their capability of meeting the software
security expectations for their role, regardless of their employment
status. Of course, some vendors and outsourced workers might
have received adequate training from their own firms, but that should
always be verified.

[T3.5: 22] Provide expertise via open collaboration channels.
Software security experts offer help to anyone in an open manner
during regularly scheduled office hours or openly accessible channels
on Slack, Jira, or similar. By acting as an informal resource for people
who want to solve security problems, the SSG leverages teachable

moments and emphasizes the carrot over the stick approach to
security best practices. Office hours might be hosted one afternoon
per week by a senior SSG member, perhaps inviting briefings from
product or application groups working on hard security problems.
Slack and other messaging applications can capture questions 24x7,
functioning as an office hours platform when appropriate subject
matter experts are consistently part of the conversation and are
ensuring that the answers generated align with SSG expectations. An
online approach has the added benefit of discussions being recorded
and searchable.

[T3.6: 7] Identify new satellite members (security
champions) through observation.
Future satellite members (e.g., security champions) are recruited by
noting people who stand out during training courses, office hours,
capture-the-flag exercises, hack-a-thons, and other opportunities
that show skill and enthusiasm, then encouraging them to join the
satellite. Pay particular attention to practitioners who are contributing
things such as code, security configurations, or defect discovery
rules. The satellite often begins as an assigned collection of people
scattered across the organization who show an above-average level
of security interest or advanced knowledge of new technology stacks
and development methodologies (see [SM2.3]). Identifying future
members proactively is a step toward creating a social network
that speeds the adoption of security into software development and
operations. A group of enthusiastic and skilled volunteers will be
easier to lead than a group that is drafted.

INTELLIGENCE

Intelligence: Attack Models (AM)
Attack Models capture information used to think like an attacker,
including threat modeling inputs, abuse cases, data classification,
and technology-specific attack patterns.

[AM1.2: 80] Use a data classification scheme for software
inventory.
Security stakeholders in an organization agree on a data
classification scheme and use it to inventory software, delivery
artifacts (e.g., containers), and associated persistent data stores
according to the kinds of data processed or services called,
regardless of deployment model (e.g., on- or off-premises). Many
classification schemes are possible—one approach is to focus on PII,
for example. Depending on the scheme and the software involved, it
could be easiest to first classify data repositories (see [CP2.1]), then
derive classifications for applications according to the repositories
they use. Other approaches include data classification according to
protection of intellectual property, impact of disclosure, exposure to
attack, relevance to GDPR, and geographic boundaries.

[AM1.3: 42] Identify potential attackers.
The SSG identifies potential attackers in order to understand
their motivations and abilities. The outcome of this periodic
exercise could be a set of attacker profiles that includes outlines
for categories of attackers and more detailed descriptions for
noteworthy individuals that are used in end-to-end design review
(see [AA1.2]). In some cases, a third-party vendor might be
contracted to provide this information. Specific and contextual
attacker information is almost always more useful than generic

36 BSIMM FOUNDATIONS REPORT – VERSION 13

information copied from someone else’s list. Moreover, a list that
simply divides the world into insiders and outsiders won’t drive
useful results. Identification of attackers should also consider
the organization’s evolving software supply chain, attack surface,
theoretical internal attackers, and contract staff.

[AM1.5: 76] Gather and use attack intelligence.
The SSG ensures the organization stays ahead of the curve by
learning about new types of attacks and vulnerabilities, then adapts
that information to the organization’s needs. Attack intelligence must
be made actionable and useful for a variety of consumers, which
might include developers, testers, DevOps, security operations, and
reliability engineers, among others. In many cases, a subscription to a
commercial service can provide a reasonable way of gathering basic
attack intelligence related to applications, APIs, containerization,
orchestration, cloud environments, and so on. Attending technical
conferences and monitoring attacker forums, then correlating that
information with what’s happening in the organization (perhaps by
leveraging automation to mine operational logs and telemetry) helps
the SSG learn more about emerging vulnerability exploitation.

[AM2.1: 16] Build attack patterns and abuse cases tied to
potential attackers.
The SSG works with stakeholders to build attack patterns and abuse
cases tied to potential attackers (see [AM1.3]). These resources
can be built from scratch or from standard sets, such as the MITRE
ATT&CK framework, and the SSG adds to the pile based on its own
attack stories to prepare the organization for SSDL activities such
as design review and penetration testing. For example, a story about
an attack against a poorly designed cloud-native application could
lead to a containerization attack pattern that drives a new type of
testing (see [ST3.5]). If a firm tracks the fraud and monetary costs
associated with specific attacks, this information can in turn be used
to prioritize the process of building attack patterns and abuse cases.
Organizations will likely need to evolve their attack pattern and abuse
case creation prioritization and content over time due to changing
software architectures (e.g., zero trust, cloud-native, serverless),
attackers, and technologies.

[AM2.2: 11] Create technology-specific attack patterns.
The SSG facilitates technology-specific attack pattern creation by
collecting and providing knowledge about attacks relevant to the
organization’s technologies. For example, if the organization’s cloud
software relies on a cloud vendor’s security apparatus (e.g., key
and secrets management), the SSG can help catalog the quirks of
the crypto package and how it might be exploited. Attack patterns
directly related to the security frontier (e.g., serverless) can be useful
here as well. It’s often easiest to start with existing generalized attack
patterns to create the needed technology-specific ones, but simply
adding “for microservices” at the end of a generalized pattern name,
for example, won’t suffice.

[AM2.5: 16] Maintain and use a top N possible attacks list.
The SSG periodically digests the ever-growing list of attack types,
creates a prioritized short list—the top N—and then uses the list to
drive change. This initial list almost always combines input from
multiple sources, both inside and outside the organization. Some
organizations prioritize their list according to a perception of potential
business loss while others might prioritize according to preventing

successful attacks against their software. The top N list doesn’t need
to be updated with great frequency, and attacks can be coarsely
sorted. For example, the SSG might brainstorm twice a year to create
lists of attacks the organization should be prepared to counter “now,”
“soon,” and “someday.”

[AM2.6: 16] Collect and publish attack stories.
To maximize the benefit from lessons that don’t always come cheap,
the SSG collects and publishes stories about attacks against the
organization’s software. Both successful and unsuccessful attacks
can be noteworthy, and discussing historical information about
software attacks has the added effect of grounding software security
in a firm’s reality. This is particularly useful in training classes (see
[T2.8]) to help counter a generic approach that might be overly
focused on other organizations’ most common bug lists or outdated
platform attacks. Hiding or overly sanitizing information about
attacks from people building new systems fails to garner any positive
benefits from a negative event.

[AM2.7: 14] Build an internal forum to discuss attacks.
The organization has an internal, interactive forum where the
SSG, the satellite, incident response, and others discuss attacks
and attack methods. The discussion serves to communicate the
attacker perspective to everyone. It’s useful to include all successful
attacks here, regardless of attack source, such as supply chain,
internal, consultants, or bug bounty contributors. The SSG augments
the forum with an internal communications channel (see [T3.5])
that encourages subscribers to discuss the latest information on
publicly known incidents. Dissection of attacks and exploits that are
relevant to a firm are particularly helpful when they spur discussion
of development, infrastructure, and other mitigations. Simply
republishing items from public mailing lists doesn’t achieve the
same benefits as active and ongoing discussions, nor does a closed
discussion hidden from those creating code and configurations.
Everyone should feel free to ask questions and learn about
vulnerabilities and exploits.

[AM3.1: 9] Have a research group that develops new attack
methods.
A research group works to identify and mitigate the impact of new
classes of attacks and shares their knowledge with stakeholders.
Identification does not always require original research—the group
might expand on an idea discovered by others. Doing this research in-
house is especially important for early adopters of new technologies
and configurations so that they can discover potential weaknesses
before attackers do. One approach is to create new attack methods
that simulate persistent attackers during goal-oriented red team
exercises (see [PT3.1]). This isn’t a penetration testing team finding
new instances of known types of weaknesses, it’s a research group
that innovates attack methods and mitigation approaches. Example
mitigation approaches include test cases, static analysis rules,
attack patterns, standards, and policy changes. Some firms provide
researchers time to follow through on their discoveries by using bug
bounty programs or other means of coordinated disclosure (see
[CMVM3.7]). Others allow researchers to publish their findings at
conferences like DEF CON to benefit everyone.

37 BSIMM FOUNDATIONS REPORT – VERSION 13

[AM3.2: 5] Create and use automation to mimic attackers.
The SSG arms engineers, testers, and incident response with
automation to mimic what attackers are going to do. For example,
a new attack method identified by an internal research group (see
[AM3.1]) or a disclosing third party could require a new tool, so the
SSG could package the tool and distribute it to testers. The idea here
is to push attack capability past what typical commercial tools and
offerings encompass, then make that knowledge and technology
easy for others to use. Mimicking attackers, and especially attack
chains, almost always requires tailoring tools to a firm’s particular
technology stacks, infrastructure, and configurations. When
technology stacks and coding languages evolve faster than vendors
can innovate, creating tools and automation in-house might be
the best way forward. In the DevOps world, these tools might be
created by engineering and embedded directly into toolchains and
automation (see [ST3.6]).

[AM3.3: 11] Monitor automated asset creation.
Implement technology controls that provide a continuously updated
view of the various network, machine, software, and related
infrastructure assets being instantiated by engineering teams. To
help ensure proper coverage, the SSG works with engineering teams
(including potential shadow IT teams) to understand orchestration,
cloud configuration, and other self-service means of software delivery
to ensure proper monitoring. This monitoring requires a specialized
effort—normal system, network, and application logging and analysis
won’t suffice. Success might require a multi-pronged approach,
including consuming orchestration and virtualization metadata,
querying cloud service provider APIs, and outside-in web crawling
and scraping.

Intelligence: Security Features & Design (SFD)
The Security Features & Design practice is charged with creating
usable security patterns for major security controls (meeting the
standards defined in the Standards & Requirements practice),
building components and services for those controls, and
establishing collaboration during security design efforts.

[SFD1.1: 104] Integrate and deliver security features.

Provide proactive guidance on preapproved security features for
engineering groups to use rather than each group implementing
its own security features. Engineering groups benefit from
implementations that come preapproved, and the SSG benefits by not
having to repeatedly track down the kinds of subtle errors that often
creep into security features (e.g., authentication, role management,
key management, logging, cryptography, protocols). These features
might be discovered during SSDL activities, created by the SSG or
specialized development teams, or defined in configuration templates
(e.g., cloud blueprints) and delivered via mechanisms such as
containers, microservices, and APIs. Generic security features often
must be tailored for specific platforms. For example, each mobile
and cloud platform will likely need its own means by which users are
authenticated and authorized, secrets are managed, and user actions
are centrally logged and monitored. It’s implementing these defined
security features that generates real progress, not simply making a
list of them.

[SFD1.2: 90] Application architecture teams engage with
the SSG.
Application architecture teams take responsibility for security in
the same way they take responsibility for performance, availability,
scalability, and resiliency. One way to keep security from falling out
of these architecture discussions is to have secure design experts
(from the SSG, a vendor, etc.) participate. Increasingly, architecture
discussions include developers and site reliability engineers who are
governing all types of software components, such as open source,
APIs, containers, and cloud services. In other cases, enterprise
architecture teams have the knowledge to help the experts create
secure designs that integrate properly into corporate design
standards. Proactive engagement with experts is key to success
here. In addition, it’s never safe for one team to assume another team
has addressed security requirements—even moving a well-known
system to the cloud means reengaging the experts.

[SFD2.1: 39] Leverage secure-by-design components and
services.
Build or provide approved secure-by-design software components
and services for use by engineering teams. Prior to approving and
publishing secure-by-design software components and services,
including open source and cloud services, the SSG must carefully
assess them for security. This assessment process to declare a
component secure-by-design is usually more rigorous and in-depth
than that for typical projects. In addition to teaching by example,
these resilient and reusable building blocks aid important efforts
such as architecture analysis and code review by making it easier
to avoid mistakes. These components and services also often have
features (e.g., application identity, RBAC) that enable uniform usage
across disparate environments. Similarly, the SSG might further
take advantage of this defined list by tailoring static analysis rules
specifically for the components it offers (see [CR2.6]).

[SFD2.2: 64] Create capability to solve difficult design
problems.
Contribute to building resilient architectures by solving design
problems unaddressed by organizational security components or
services, or by cloud service providers, thus minimizing the negative
impact that security has on other constraints, such as feature
velocity. Involving the SSG and secure design experts in application
refactoring or in the design of a new protocol, microservice, or
architecture decision (e.g., containerization) enables timely analysis
of the security implications of existing defenses and identifies
elements to be improved. Designing for security early in the new
project process is more efficient than analyzing an existing design for
security and then refactoring when flaws are uncovered (see [AA1.1],
[AA1.2], [AA2.1]). The SSG could also get involved in what would have
historically been purely engineering discussions, as even rudimentary
use of cloud-native technologies (e.g., “Hello, world!”) requires
proper use of configurations and other capabilities that have direct
implications on security posture.

[SFD3.1: 17] Form a review board to approve and maintain
secure design patterns.
A review board formalizes the process of reaching and maintaining
consensus on security tradeoffs in design needs. Unlike a
typical architecture committee focused on functions, this group
focuses on providing security guidance, often in the form of

38 BSIMM FOUNDATIONS REPORT – VERSION 13

patterns, standards, features, or frameworks. It also periodically
reviews already published design guidance (especially around
authentication, authorization, and cryptography) to ensure that
design decisions don’t become stale or out of date. This review
board helps control the chaos associated with adoption of new
technologies when development groups might otherwise make
decisions on their own without engaging the SSG. Review board
security guidance can also serve to inform outsourced software
providers about security expectations (see [CP3.2]).

[SFD3.2: 18] Require use of approved security features and
frameworks.
Implementers must take their security features and frameworks
from an approved list or repository (see [SFD1.1], [SFD2.1], [SFD3.1]).
There are two benefits to this activity—developers don’t spend time
reinventing existing capabilities, and review teams don’t have to
contend with finding the same old defects in new projects or when
new platforms are adopted. Reusing proven components eases
testing, code review, and threat modeling (see [AA1.1]). Reuse
is a major advantage of consistent software architecture and is
particularly helpful for Agile development and velocity maintenance in
CI/CD pipelines. Packaging and applying required components, such
as via containerization (see [SE2.5]), makes it especially easy to reuse
approved features and frameworks.

[SFD3.3: 7] Find and publish secure design patterns from
the organization.
Foster centralized design reuse by collecting secure design patterns
(sometimes referred to as security blueprints) from across the
organization and publishing them for everyone to use. A section
of the SSG website (see [SR1.2]) could promote positive elements
identified during threat modeling or architecture analysis so that
good ideas spread widely. This process is formalized—an ad
hoc, accidental noticing isn’t sufficient. Common design patterns
accelerate development, so it’s important to use secure design
patterns, not just for applications but for all software assets (e.g.,
microservices, APIs, containers, infrastructure, and automation).

Intelligence: Standards & Requirements (SR)
The Standards & Requirements practice involves eliciting explicit
software security requirements from the organization, determining
which COTS tools to recommend, building standards for major
security controls (such as authentication, input validation, and so on),
creating security standards for technologies in use, and creating a
standards review process.

[SR1.1: 96] Create security standards.
The organization meets the demand for security guidance by
creating standards that explain the required way to adhere to
policy and carry out security-centric design, development, and
operations. A standard might describe how to perform identity-
based application authentication or how to implement transport-
level security, perhaps with the SSG ensuring the availability of
a reference implementation. Standards often apply to software
beyond the scope of an application’s code, including container
construction, orchestration, infrastructure-as-code, and cloud
security configuration. Standards can be deployed in a variety of
ways to keep them actionable and relevant. They can be automated
into development environments (such as an IDE or toolchain) or

explicitly linked to code examples and deployment artifacts (e.g.,
containers). In any case, to be considered standards, they must be
adopted and enforced.

[SR1.2: 101] Create a security portal.
The organization has a well-known central location for information
about software security. Typically, this is an internal website
maintained by the SSG and satellite (security champions) that people
refer to for current information on security policies, standards, and
requirements, as well as for other resources (such as training).
An interactive portal is better than a static portal with guideline
documents that rarely change. Organizations often supplement these
materials with mailing lists, chat channels (see [T3.5]), and face-to-
face meetings. Development teams are increasingly putting software
security knowledge directly into toolchains and automation that are
outside the organization (e.g., GitHub), but that does not remove the
need for SSG-led knowledge management.

[SR1.3: 103] Translate compliance constraints to
requirements.

Compliance constraints are translated into security requirements
for individual projects and communicated to the engineering teams.
This is a linchpin in the organization’s compliance strategy—by
representing compliance constraints explicitly with requirements
and informing stakeholders, the organization demonstrates that
compliance is a manageable task. For example, if the organization
builds software that processes credit card transactions, PCI
DSS compliance plays a role during the security requirements
phase. In other cases, technology standards built for international
interoperability can include security guidance on compliance needs.
Representing these standards as requirements also helps with
traceability and visibility in the event of an audit. It’s particularly
useful to codify the requirements into reusable code (see [SFD2.1]) or
artifact deployment specifications (see [SE2.2]).

[SR2.2: 80] Create a standards review process.
Create a process to develop software security standards and ensure
that all stakeholders have a chance to weigh in. This review process
could operate by appointing a spokesperson for any proposed
security standard, putting the onus on the person to demonstrate
that the standard meets its goals and to get buy-in and approval
from stakeholders. Enterprise architecture or enterprise risk groups
sometimes take on the responsibility of creating and managing
standards review processes. When the standards are implemented
directly as software, the responsible person might be a DevOps
manager, release engineer, or whoever owns the associated
deployment artifact (e.g., the orchestration code).

[SR2.4: 92] Identify open source.
Identify open source components and dependencies included
in the organization’s code repositories and built software, then
review them to understand their security posture. Organizations
use a variety of tools and metadata provided by delivery pipelines
to discover old versions of open source components with known
vulnerabilities or that their software relies on multiple versions of
the same component. Scale efforts by using automated tools to find
open source, whether whole components or perhaps large chunks
of borrowed code. Some software development pipeline platforms,
container registries, and middleware platforms have begun to provide

39 BSIMM FOUNDATIONS REPORT – VERSION 13

this visibility as metadata (e.g., SBOMs, [SE3.6]) resulting from
behind-the-scenes artifact scanning. Some organizations combine
composition analysis results from multiple phases of the software
lifecycle to get a more complete and accurate list of the open source
being included in production software.

[SR2.5: 63] Create SLA boilerplate.
The SSG works with the legal department to create standard SLA
boilerplate for use in contracts with vendors and outsource providers,
including cloud providers, to require software security efforts on their
part. The legal department might also leverage the boilerplate to help
prevent compliance and privacy problems. Under the agreement,
vendors and outsource providers must meet company-mandated
software security SLAs (see [CP2.4]). Boilerplate language might call
for objective third-party insight into software security efforts, such as
BSIMMsc measurements or BSIMM scores.

[SR2.7: 53] Control open source risk.
The organization has control over its exposure to the risks that
come along with using open source components and all the involved
dependencies, including dependencies integrated at runtime.
Controlling exposure usually includes multiple efforts, with one
example being responding to known vulnerabilities in identified
open source (see [SR2.4]). The use of open source could also be
restricted to predefined projects or to a short list of versions that
have been through an approved security screening process, have
had unacceptable vulnerabilities remediated, and are made available
only through approved internal repositories and containers. For some
use cases, policy might preclude any use of open source. The legal
department often spearheads additional open source controls due
to the viral license problem associated with GPL code. SSGs that
partner with and educate the legal department can help move an
organization to improve its open source risk management practices,
which must be applied across the software portfolio to be effective.

[SR3.2: 19] Communicate standards to vendors.
Work with vendors to educate them and promote the organization’s
security standards. A healthy relationship with a vendor isn’t
guaranteed through contract language alone (see [CP2.4]), so
the SSG should engage with vendors, discuss vendor security
practices, and explain in simple terms (rather than legalese) what the
organization expects. Any time a vendor adopts the organization’s
security standards, it’s a clear sign of progress. Note that standards
implemented as security features or infrastructure configuration
could be a requirement to services integration with a vendor
(see [SFD1.1], [SE2.2]). When the firm’s SSDL is publicly available,
communication regarding software security expectations is easier.
Likewise, sharing internal practices and measures can make
expectations clear.

[SR3.3: 17] Use secure coding standards.
Developers use secure coding standards to avoid the most obvious
bugs and as ground rules for code review. These standards
are necessarily specific to a programming language, and they
can address the use of popular frameworks, APIs, libraries, and
infrastructure automation. Secure coding standards can also
be for low- or no-code platforms (e.g., Microsoft Power Apps,
Salesforce Lightning). While enforcement isn’t the point at this
stage (see [CR3.5]), violation of standards is a teachable moment

for all stakeholders. Other useful coding standards topics include
proper use of cloud APIs, use of approved cryptography, memory
sanitization, banned functions, open source use, and many others.
If the organization already has coding standards for other purposes,
its secure coding standards should build upon them. A clear set of
secure coding standards is a good way to guide both manual and
automated code review, as well as to provide relevant examples for
security training. Some groups might choose to integrate their secure
coding standards directly into automation. Socializing the benefits of
following standards is also a good first step to gaining widespread
acceptance (see [SM2.7]).

[SR3.4: 19] Create standards for technology stacks.
The organization standardizes on the use of specific technology
stacks. This translates into a reduced workload because teams don’t
have to explore new technology risks for every new project. The
organization might create a secure base configuration (commonly
in the form of golden images, Terraform definitions, etc.) for each
technology stack, further reducing the amount of work required to
use the stack safely. In cloud environments, hardened configurations
likely include up-to-date security patches, security configuration, and
security services, such as logging and monitoring. In traditional on-
premises IT deployments, a stack might include an operating system,
a database, an application server, and a runtime environment (e.g.,
a LAMP stack). Standards for secure use of reusable technologies,
such as containers, microservices, or orchestration code, means
that getting security right in one place positively impacts the security
posture of all downstream efforts (see [SE2.5]).

SDLC TOUCHPOINTS

SDLC Touchpoints: Architecture Analysis (AA)
Architecture analysis encompasses capturing software architecture
in concise diagrams, applying lists of risks and threats, adopting a
process for review (such as Microsoft Threat Modeling [STRIDE]
or Architecture Risk Analysis [ARA]), building an assessment and
remediation plan for the organization, and using a risk methodology
to rank applications.

[AA1.1: 113] Perform security feature review.

Security-aware reviewers identify application security features, review
these features against application security requirements and runtime
parameters, and determine if each feature can adequately perform
its intended function—usually referred to as threat modeling. The
goal is to quickly identify missing security features and requirements,
or bad deployment configuration (authentication, access control,
use of cryptography, etc.), and address them. For example, threat
modeling would identify both a system that was subject to escalation
of privilege attacks because of broken access control as well as a
mobile application that incorrectly puts PII in local storage. Use of the
firm’s secure-by-design components often streamlines this process
(see [SFD2.1]). Many modern applications are no longer simply
“3-tier” but instead involve components architected to interact across
a variety of tiers—browser/endpoint, embedded, web, microservices,
orchestration engines, deployment pipelines, third-party SaaS, and
so on. Some of these environments might provide robust security
feature sets, whereas others might have key capability gaps that

40 BSIMM FOUNDATIONS REPORT – VERSION 13

require careful analysis, so organizations should consider the
applicability and correct use of security features across all tiers that
constitute the architecture and operational environment.

[AA1.2: 53] Perform design review for high-risk applications.
Perform a design review to determine whether security features and
deployment configuration are resistant to attack in an attempt to
break the design. The goal is to extend the more formulaic approach
of a security feature review (see [AA1.1]) to model application
behavior in the context of real-world attackers and attacks. Reviewers
must have some experience beyond simple threat modeling to
include performing detailed design reviews and breaking the design
under consideration. Rather than security feature guidance, a design
review should produce a set of flaws and a plan to mitigate them.
An organization can use consultants to do this work, but it should
participate actively. A review focused only on whether a software
project has performed the right process steps won’t generate useful
results about flaws. Note that a sufficiently robust design review
process can’t be executed at CI/CD speed, so organizations should
focus on a few high-risk applications to start (see [AA1.4]).

[AA1.4: 69] Use a risk methodology to rank applications.
Use a defined risk methodology to collect information about each
application in order to assign a risk classification and associated
prioritization. It is important to use this information in prioritizing
what applications or projects are in scope for testing, including
security feature and design reviews. Information collection can be
implemented via questionnaire or similar method, whether manual
or automated. Information needed for classification might include,
“Which programming languages is the application written in?” or
“Who uses the application?” or “Is the application’s deployment
software-orchestrated?” Typically, a qualified member of the
application team provides the information, but the process should
be short enough to take only a few minutes. The SSG can use the
answers to categorize the application as, for example, high, medium,
or low risk. Because a risk questionnaire can be easy to game, it’s
important to put into place some spot-checking for validity and
accuracy—an overreliance on self-reporting can render this activity
useless.

[AA2.1: 31] Perform architecture analysis using a defined
process.
Define and use a process for architecture analysis (AA) that extends
the design review (see [AA1.2]) to also document business risk in
addition to technical flaws. The goal is to identify application design
flaws as well as the associated risk (e.g., impact of exploitation),
such as through frequency or probability analysis, to properly inform
stakeholder risk management efforts. The AA process includes a
standardized approach for thinking about attacks, vulnerabilities, and
various security properties. The process is defined well enough that
people outside the SSG can carry it out. It’s important to document
both the architecture under review and any security flaws uncovered,
as well as risk information that people can understand and use.
Microsoft Threat Modeling, Versprite PASTA, and Synopsys ARA
are examples of such a process, although these will likely need to
be tailored to a given environment. In some cases, performing AA
and documenting business risk is done by different teams working
together in a single process. Uncalibrated or ad hoc AA approaches
don’t count as a defined process.

[AA2.2: 32] Standardize architectural descriptions.
Threat modeling, design review, or AA processes use an agreed-upon
format (e.g., diagramming language and icons, not a Word document
template) to describe architecture, including a means for representing
data flow. Standardizing architecture descriptions between those who
generate the models and those who analyze and annotate them makes
analysis more tractable and scalable. High-level network diagrams, data
flow, and authorization flows are always useful, but the model should
also go into detail about how the software itself is structured. A standard
architecture description can be enhanced to provide an explicit picture
of information assets that require protection, including useful metadata.
Standardized icons that are consistently used in diagrams, templates,
and dry-erase board squiggles are especially useful, too.

[AA2.4: 38] Have SSG lead design review efforts.
The SSG takes a lead role in performing design review (see [AA1.2]) to
uncover flaws. Breaking down an architecture is enough of an art that
the SSG, or other reviewers outside the application team, must be
proficient, and proficiency requires practice. This practice might then
enable, for example, champions to take the day-to-day lead while the
SSG maintains leadership around knowledge and process. The SSG
can’t be successful on its own, either—it will likely need help from
architects or implementers to understand the design. With a clear
design in hand, the SSG might be able to carry out a detailed review
with a minimum of interaction with the project team. Approaches
to design review evolve over time, so it’s wise to not expect to set
a process and use it forever. Outsourcing design review might be
necessary, but it’s also an opportunity to participate and learn.

[AA3.1: 20] Have engineering teams lead AA process.
Engineering teams lead AA to uncover technical flaws and
document business risk. This effort requires a well-understood and
well-documented process (see [AA2.1]). Even with a good process,
consistency is difficult to attain because breaking architecture
requires experience, so be sure to provide architects with SSG
or outside expertise in an advisory capacity. Engineering teams
performing AA might normally have responsibilities such as
development, DevOps, cloud security, operations security, security
architecture, or a variety of similar roles. The process is more useful if
the AA team is different from the design team.

[AA3.2: 4] Drive analysis results into standard design
patterns.
Failures identified during threat modeling, design review, or AA are fed
back to security and engineering teams so that similar mistakes can
be prevented in the future through improved design patterns, whether
local to a team or formally approved for everyone (see [SFD3.1]).
This typically requires a root-cause analysis process that determines
the cause of security flaws, searches for the process that should
have prevented the flaw, and makes the necessary improvements
in documented security design patterns. Note that security design
patterns can interact in surprising ways that break security, so apply
analysis processes even when vetted design patterns are in standard
use. For cloud services, providers have learned a lot about how their
platforms and services fail to resist attack and have codified this
experience into patterns for secure use. Organizations that heavily rely
on these services might base their application-layer patterns on those
building blocks provided by the cloud service provider (for example,
AWS CloudFormation and Azure Blueprints) when making their own.

41 BSIMM FOUNDATIONS REPORT – VERSION 13

[AA3.3: 15] Make the SSG available as an AA resource or
mentor.
To build organizational AA capability, the SSG advertises experts as
resources or mentors for teams using the AA process (see [AA2.1]).
This effort might enable, for example, security champions, site
reliability engineers, DevSecOps engineers, and others to take the lead
while the SSG offers advice. As one example, mentors help tailor AA
process inputs (such as design or attack patterns) to make them more
actionable for specific technology stacks. This reusable guidance helps
protect the team’s time so they can focus on the problems that require
creative solutions rather than enumerating known bad habits. While the
SSG might answer AA questions during office hours (see [T3.5]), they
will often assign a mentor to work with a team, perhaps comprising
both security-aware engineers and risk analysts, for the duration of the
analysis. In the case of high-risk software, the SSG should play a more
active mentorship role in applying the AA process.

SDLC Touchpoints: Code Review (CR)
The Code Review practice includes use of code review tools (e.g.,
static analysis), development of tailored rules, customized profiles
for tool use by different roles (for example, developers vs. auditors),
manual analysis, and tracking and measuring results.

[CR1.2: 83] Perform opportunistic code review.
Perform code review for high-risk applications in an opportunistic
fashion. Organizations can follow up a design review with a code
review looking for security issues in source code and dependencies,
and perhaps also in deployment artifact configuration (e.g., containers)
and automation metadata (e.g., infrastructure-as-code). This informal
targeting often evolves into a systematic approach. Manual code
review could be augmented with the use of specific tools and services,
but it has to be part of a proactive process. When new technologies
pop up, new approaches to code review might become necessary.

[CR1.4: 107] Use automated code review tools.

Incorporate static analysis into the code review process to make the
review more efficient and consistent. Automation won’t replace human
judgement, but it does bring definition to the review process and
security expertise to reviewers who typically aren’t security experts.
Note that a specific tool might not cover an entire portfolio, especially
when new languages are involved, so additional local effort might be
useful. Some organizations might progress to automating tool use by
instrumenting static analysis into source code management workflows
(e.g., pull requests) and delivery pipeline workflows (build, package, and
deploy) to make the review more efficient, consistent, and in line with
release cadence. Whether use of automated tools is to review a portion
of the source code incrementally, such as a developer committing
new code or small changes, or to conduct full analysis by scanning
the entire codebase, this service should be explicitly connected to a
larger SSDL defect management process applied during software
development. This effort is not useful when done just to “check the
security box” on the path to deployment.

[CR1.5: 62] Make code review mandatory for all projects.
A security-focused code review is mandatory for all software
projects, with a lack of code review or unacceptable results stopping
a release, slowing it down, or causing it to be recalled. While all

projects must undergo code review, the process might be different
for different kinds of projects. The review for low-risk projects might
rely more heavily on automation (see [CR1.4]), for example, whereas
high-risk projects might have no upper bound on the amount of
time spent by reviewers. Having a minimum acceptable standard
forces projects that don’t pass to be fixed and reevaluated. A code
review tool with nearly all the rules turned off (so it can run at CI/
CD automation speeds, for example) won’t provide sufficient defect
coverage. Similarly, peer code review or tools focused on quality and
style won’t provide useful security results.

[CR1.7: 54] Assign code review tool mentors.
Mentors show developers how to get the most out of code review
tools, including configuration, triage, and remediation. Security
champions, DevOps and site reliability engineers, and SSG members
often make good mentors. Mentors could use office hours or other
outreach to help developers establish the right configuration and
get started on interpreting and remediating results. Alternatively,
mentors might work with a development team for the duration of the
first review they perform. Centralized use of a tool can be distributed
into the development organization or toolchains over time through
the use of tool mentors, but providing installation instructions and
URLs to centralized tool downloads isn’t the same as mentoring.
Increasingly, mentorship extends to code review tools associated
with deployment artifacts (e.g., container security) and infrastructure
(e.g., cloud configuration).

[CR2.6: 28] Use custom rules with automated code review
tools.
Create and use custom rules in code review tools to help uncover
security defects specific to the organization’s coding standards, or
to the framework-based or cloud-provided middleware it uses. The
same group that provides tool mentoring (see [CR1.7]) will likely
spearhead this customization. Custom rules are often explicitly
tied to proper usage of technology stacks in a positive sense and
avoidance of errors commonly encountered in a firm’s codebase in
a negative sense. Custom rules are also an easy way to check for
adherence to coding standards (see [CR3.5]). To reduce the workload
for everyone, many organizations also create rules to remove
repeated false positives and to turn off checks that aren’t relevant.

[CR2.7: 20] Use a top N bugs list (real data preferred).
Maintain a living list of the most important kinds of bugs the
organization wants to eliminate from its code and use it to drive
change. Many organizations start with a generic list pulled from
public sources, but broad-based lists such as the OWASP Top 10
rarely reflect an organization’s bug priorities. The list’s value comes
from being specific to the organization, being built from real data
gathered from code review (see [CR2.8]), testing (see [PT1.2]),
software composition analysis (see [SE3.8]), and actual incidents
(see [CMVM1.1]), then being prioritized for prevention efforts.
Simply sorting the day’s bug data by number of occurrences won’t
produce a satisfactory list because the data changes so often. To
increase interest, the SSG can periodically publish a “most wanted”
report after updating the list. One potential pitfall with a top N list
is that it tends to include only known problems. Of course, just
building the list won’t accomplish anything—everyone has to use it
to find and fix bugs.

42 BSIMM FOUNDATIONS REPORT – VERSION 13

[CR2.8: 34] Use centralized defect reporting to close the
knowledge loop.
The bugs found during code review are tracked in a centralized
repository that makes it possible to do both summary and trend
reporting for the organization. The code review information is usually
incorporated into a CISO-level dashboard that can include feeds from
other security testing efforts (e.g., penetration testing, composition
analysis, threat modeling). Given the historical code review data, the
SSG can also use the reports to demonstrate progress (see [SM3.3]),
then, for example, drive the training curriculum. Individual bugs make
excellent training examples (see [T2.8]). Some organizations have
moved toward analyzing this data and using the results to drive
automation (see [ST3.6]).

[CR3.2: 14] Build a capability to combine AST results.
Combine application security testing results so that multiple testing
techniques feed into one reporting and remediation process. In
addition to code review, testing techniques often include dynamic
analysis, software composition analysis, container scanning, cloud
services configuration review, and so on. The SSG might write scripts
or acquire software to gather data automatically and combine the
results into a format that can be consumed by a single downstream
review and reporting solution. The tricky part of this activity is
normalizing vulnerability information from disparate sources that
might use conflicting terminology or scoring. In some cases, using
a standardized taxonomy (e.g., a CWE-like approach) can help
with normalization. Combining multiple sources helps drive better-
informed risk mitigation decisions.

[CR3.3: 8] Create capability to eradicate bugs.
When a security bug is found during code review (see [CR1.2],
[CR1.4]), the organization searches for then fixes all occurrences of
the bug, not just the instance originally discovered. Searching with
custom rules (see [CR2.6]) makes it possible to eradicate the specific
bug entirely without waiting for every project to reach the code review
portion of its lifecycle. This doesn’t mean finding every instance of
every kind of cross-site scripting bug when a specific example is
found—it means going after that specific example everywhere. A
firm with only a handful of software applications built on a single
technology stack will have an easier time with this activity than firms
with many large applications built on a diverse set of technology
stacks. A new development framework or library, rules in RASP or
a next-generation firewall, or cloud configuration tools that provide
guardrails can often help in (but not replace) eradication efforts.

[CR3.4: 2] Automate malicious code detection.
Use automated code review to identify malicious code written by
in-house developers or outsource providers. Examples of malicious
code include backdoors, logic bombs, time bombs, nefarious
communication channels, obfuscated program logic, and dynamic
code injection. Although out-of-the-box automation might identify
some generic malicious-looking constructs, custom rules for the
static analysis tools used to codify acceptable and unacceptable
patterns in the organization’s codebase will likely become a necessity.
Manual review for malicious code is a good start but insufficient to
complete this activity at scale. While not all backdoors or similar
code were meant to be malicious when they were written (e.g.,

a developer’s feature to bypass authentication during testing),
such things tend to stay in deployed code and should be treated
as malicious until proven otherwise. Discovering some types of
malicious code will require dynamic testing techniques.

[CR3.5: 3] Enforce secure coding standards.
A violation of secure coding standards is sufficient grounds for
rejecting a piece of code. This rejection can take one or more forms,
such as denying a pull request, breaking a build, failing quality
assurance, removal from production, or moving the code into a
different development workstream where repairs or exceptions can be
worked out. The enforced portions of an organization’s secure coding
standards (see [SR3.3]) often start out as a simple list of banned
functions or required frameworks. Code review against standards
must be objective—it shouldn’t become a debate about whether the
noncompliant code is exploitable. In some cases, coding standards
are specific to language constructs and enforced with tools (e.g.,
codified into SAST rules). In other cases, published coding standards
are specific to technology stacks and enforced during the code review
process or by using automation. Standards can be positive (“do it this
way”) or negative (“do not use this API”), but they must be enforced.

SDLC Touchpoints: Security Testing (ST)
The Security Testing practice is concerned with prerelease defect
discovery, including integrating security into standard QA processes.
The practice includes the use of opaque-box application security
testing (AST) tools (including fuzz testing) as a smoke test in QA, risk-
driven crystal-box test suites, application of the attack model, and
code coverage analysis. Security testing focuses on vulnerabilities in
construction.

[ST1.1: 108] Perform edge/boundary value condition
testing during QA.

QA efforts go beyond functional testing to perform basic adversarial
tests and probe simple edge cases and boundary conditions, with
no particular attacker skills required. When QA pushes past standard
functional testing that uses expected input, it begins to move
toward thinking like an adversary. Boundary value testing, whether
automated or manual, can lead naturally to the notion of an attacker
probing the edges on purpose (for example, determining what
happens when someone enters the wrong password over and over).

[ST1.3: 97] Drive tests with security requirements and
security features.
QA targets declarative security mechanisms with tests derived
from security requirements and security features. A test could
try to access administrative functionality as an unprivileged user,
for example, or verify that a user account becomes locked after
some number of failed authentication attempts. For the most part,
security features can be tested in a fashion similar to other software
features—security mechanisms such as account lockout, transaction
limitations, entitlements, and so on are tested with both expected and
unexpected input as derived from security requirements. Software
security isn’t security software, but testing security features is an
easy way to get started. New software architectures and deployment
automation, such as with container and cloud infrastructure
orchestration, might require novel test approaches.

43 BSIMM FOUNDATIONS REPORT – VERSION 13

[ST1.4: 56] Integrate opaque-box security tools into the QA
process.
The organization uses one or more opaque-box security testing tools
as part of the QA process. Such tools are valuable because they
encapsulate an attacker’s perspective, albeit generically. Traditional
dynamic analysis scanners are relevant for web applications, while
similar tools exist for cloud environments, containers, mobile
applications, embedded systems, and so on. In some situations,
other groups might collaborate with the SSG to apply the tools. For
example, a testing team could run the tool but come to the SSG for
help with interpreting the results. When testing is integrated into Agile
development approaches, opaque-box tools might be hooked into
internal toolchains, provided by cloud-based toolchains, or used directly
by engineering. Regardless of who runs the opaque-box tool, the
testing should be properly integrated into a QA cycle of the SSDL and
will often include both authenticated and unauthenticated reviews.

[ST2.4: 25] Drive QA tests with AST results.
Share results from application security testing, such as penetration
testing, threat modeling, composition analysis, code reviews, etc.,
with QA teams to evangelize the security mindset. Using security
defects as the basis for a conversation about common attack
patterns or the underlying causes allows QA teams to generalize this
information into new test approaches. Organizations that leverage
software pipeline platforms such as GitHub, or CI/CD platforms such
as the Atlassian stack, can benefit from teams receiving various
testing results automatically, which should then facilitate timely
stakeholder conversations—emailing security reports to QA teams
will not generate the desired results. Over time, QA teams learn the
security mindset, and the organization benefits from an improved
ability to create security tests tailored to the organization’s code.

[ST2.5: 31] Include security tests in QA automation.
Security tests are included in an automation framework and run
alongside functional, performance, and other QA test suites.
Executing this automation framework can be triggered manually or
through additional automation (e.g., as part of pipeline tooling). When
test creators who understand the software create security tests,
they can uncover more specialized or more relevant defects than
commercial tools might (see [ST1.4]). Security tests might be derived
from typical failures of security features (see [SFD1.1]), from creative
tweaks of functional and developer tests, or even from guidance
provided by penetration testers on how to reproduce an issue. Tests
that are performed manually or out-of-band likely will not provide
timely feedback.

[ST2.6: 21] Perform fuzz testing customized to application
APIs.
QA efforts include running a customized fuzzing framework against
APIs critical to the organization. An API might be software that
allows two applications to communicate or even software that
allows a human to interact with an application (e.g., a webform).
Testers could begin from scratch or use an existing fuzzing toolkit,
but the necessary customization often goes beyond creating custom
protocol descriptions or file format templates to giving the fuzzing
framework a built-in understanding of the application interfaces
and business logic. Test harnesses developed explicitly for specific
applications make good places to integrate fuzz testing.

[ST3.3: 12] Drive tests with design review results.
Use design review or architecture analysis results to direct QA test
creation. For example, if the results of attempting to break a design
determine that “the security of the system hinges on the transactions
being atomic and not being interrupted partway through” then torn
transactions will become a primary target in adversarial testing.
Adversarial tests like these can be developed according to a risk
profile, with high-risk flaws at the top of the list. Security defect data
shared with QA (see [ST2.4]) can help focus test creation on areas
of potential vulnerability that can, in turn, help prove the existence of
identified high-risk flaws.

[ST3.4: 4] Leverage code coverage analysis.
Testers measure the code coverage of their application security
testing to identify code that isn’t being exercised and then adjust
test cases to incrementally improve coverage. AST can include
automated testing (see [ST2.5], [ST2.6]) and manual testing (see
[ST1.1], [ST1.3]). In turn, code coverage analysis drives increased
security testing depth. Coverage analysis is easier when using
standard measurements such as function coverage, line coverage, or
multiple condition coverage. Measuring how broadly the test cases
cover security requirements is not the same as measuring how
broadly the test cases exercise the code. Note that standard-issue
opaque-box testing tools (e.g., web application scanners, see [ST1.4])
provide exceptionally low coverage, leaving much of the software
under test unexplored.

[ST3.5: 4] Begin to build and apply adversarial security tests
(abuse cases).
QA teams incorporate test cases based on abuse cases (see
[AM2.1]) as testers move beyond verifying functionality and take on
the attacker’s perspective. One way to do this is to systematically
attempt to replicate incidents from the organization’s history. Abuse
and misuse cases based on the attacker’s perspective can also be
derived from security policies, attack intelligence, standards, and
the organization’s top N attacks list (see [AM2.5]). This effort turns
the corner in QA from testing features to attempting to break the
software under test.

[ST3.6: 3] Implement event-driven security testing in
automation.
The SSG guides implementation of automation for continuous,
event-driven application security testing. An event here is simply a
noteworthy occurrence, such as dropping new code in a repository,
a pull request, a build request, a push to deployment, or a Tuesday
at noon. Event-driven testing implemented in pipeline automation
typically moves the testing closer to the conditions driving the testing
requirement (whether shift left toward design or shift right toward
operations), repeats the testing as often as the event is triggered,
and helps ensure that the right testing is executed for a given set of
conditions. Success with this approach depends on the broad use
of sensors (e.g., agents, bots) that monitor engineering processes,
execute contextual rules, and provide telemetry to automation
that initiates the specified testing whenever event conditions are
met. More mature configurations proceed to including risk-driven
conditions (e.g., size of change, provenance, function, team).

44 BSIMM FOUNDATIONS REPORT – VERSION 13

DEPLOYMENT

Deployment: Penetration Testing (PT)
The Penetration Testing practice involves standard outside-in testing
of the sort carried out by security specialists. Penetration testing
focuses on vulnerabilities in preproduction and production code,
providing direct feeds to defect management and mitigation.

[PT1.1: 114] Use external penetration testers to find
problems.

External penetration testers are used to demonstrate that the
organization’s software needs help. Finding critical vulnerabilities in
high-profile applications provides the evidence that executives often
require. Over time, the focus of penetration testing moves from trying
to determine if the code is broken in some areas to a sanity check
done before shipping or on a periodic basis. External penetration
testers who bring a new set of experiences and skills to the problem
are the most useful.

[PT1.2: 102] Feed results to the defect management and
mitigation system.
All penetration testing results are fed back to engineering through
established defect management or mitigation channels, with
development and operations responding via a defect management
and release process. In addition to application vulnerabilities,
also track results from testing other software such as containers
and infrastructure configuration. Properly done, this exercise
demonstrates the organization’s ability to improve the state of
security and emphasizes the importance of not just identifying but
actually fixing security problems. One way to ensure attention is
to add a security flag to the bug-tracking and defect management
system. The organization might leverage developer workflow or
social tooling (e.g., JIRA, Slack) to communicate change requests,
but these requests are still tracked explicitly as part of a vulnerability
management process.

[PT1.3: 88] Use penetration testing tools internally.
The organization creates an internal penetration testing capability
that uses tools as part of an established process. Execution can
be part of the SSG or part of a specialized team elsewhere in the
organization, with the tools complementing manual efforts to
improve the efficiency and repeatability of the testing process. The
tools used will usually include off-the-shelf products built specifically
for application penetration testing, network penetration tools that
specifically understand the application layer, container and cloud
configuration testing tools, and custom scripts. Free-time or crisis-
driven efforts aren’t the same as an internal capability.

[PT2.2: 38] Penetration testers use all available information.
Penetration testers, whether internal or external, routinely make
use of all artifacts created throughout the SSDL to do more
comprehensive analysis and find more problems. Example artifacts
include source code, design documents, architecture analysis results,
misuse and abuse cases, code review results, and cloud environment
and other deployment configurations. Focusing on high-risk
applications is a good way to start. An SSDL that creates no useful
artifacts about the code will make this effort harder. Having access to
the artifacts is not the same as using them.

[PT2.3: 45] Schedule periodic penetration tests for
application coverage.
All applications are tested periodically, which could be tied to a
calendar or a release cycle. High-risk applications could get a
penetration test at least once per year, for example, even if there
have not been substantive code changes—other applications might
receive different kinds of security testing on a similar schedule. Any
security testing performed must focus on discovering vulnerabilities,
not just checking a process or compliance box. This testing serves
as a sanity check and helps ensure that yesterday’s software isn’t
vulnerable to today’s attacks. The testing can also help maintain the
security of software configurations and environments, especially
for containers and components in the cloud. One important aspect
of periodic security testing across the portfolio is to make sure that
the problems identified are actually fixed. Software that isn’t an
application, such as automation created for CI/CD, infrastructure-as-
code, and so on, deserves some security testing as well.

[PT3.1: 26] Use external penetration testers to perform
deep-dive analysis.
The SSG uses external penetration testers to do a deep-dive analysis
on critical software systems or technologies and to introduce fresh
thinking. One way to do this is to simulate persistent attackers
using goal-oriented red team exercises. These testers are domain
experts and specialists who keep the organization up to speed
with the latest version of the attacker’s perspective and have a
track record for breaking the type of software being tested. When
attacking the organization’s software, these testers demonstrate
a creative approach that provides useful knowledge to the people
designing, implementing, and hardening new systems. Creating new
types of attacks from threat intelligence and abuse cases typically
requires extended timelines, which is essential when it comes to new
technologies, and prevents checklist-driven approaches that look only
for known types of problems.

[PT3.2: 15] Customize penetration testing tools.
Build a capability to create penetration testing tools or adapt publicly
available ones to attack the organization’s software more efficiently
and comprehensively. Creating penetration testing tools requires a
deep understanding of attacks (see [AM2.1], [AM3.1]) and technology
stacks (see [AM2.2]). Customizing existing tools goes beyond
configuration changes and extends tool functionality to find new
issues. Tools will improve the efficiency of the penetration testing
process without sacrificing the depth of problems that the SSG can
identify. Automation can be particularly valuable in organizations
using Agile methodologies because it helps teams go faster. Tools
that can be tailored are always preferable to generic tools. Success
here is often dependent upon both the depth and scope of tests
enabled through customized tools.

Deployment: Software Environment (SE)
The Software Environment practice deals with OS and platform
patching (including in the cloud), WAFs (web application firewalls),
installation and configuration documentation, containerization,
orchestration, application monitoring, change management, and
code signing.

45 BSIMM FOUNDATIONS REPORT – VERSION 13

[SE1.1: 87] Use application input monitoring.
The organization monitors input to the software that it runs in order
to spot attacks. Monitoring systems that write log files are useful
only if humans or bots periodically review the logs and take action.
For web applications, a WAF can do this monitoring, while other
kinds of software likely require other approaches, such as runtime
instrumentation. Software and technology stacks such as mobile and
IoT likely require their own input monitoring solutions. Serverless and
containerized software can require interaction with vendor software
to get the appropriate logs and monitoring data. Cloud deployments
and platform-as-a-service usage can add another level of difficulty to
the monitoring, collection, and aggregation approach.

[SE1.2: 115] Ensure host and network security basics
are in place.

The organization provides a solid foundation for its software by
ensuring that host (whether bare metal or virtual machine) and
network security basics are in place across its data centers and
networks, and that these basics remain in place during new releases.
Host and network security basics must account for evolving network
perimeters, increased connectivity and data sharing, software-defined
networking, and increasing dependence on vendors (e.g., content
delivery, load balancing, and content inspection services). Doing
software security before getting host and network security in place is
like putting on shoes before putting on socks.

[SE1.3: 79] Implement cloud security controls.
Organizations ensure that cloud security controls are in place and
working for both public and private clouds. Industry best practices
are a good starting point for local policy and standards to drive
controls and configurations. Of course, cloud-based assets often
have public-facing services that create an attack surface (e.g.,
cloud-based storage) that is different from the one in a private data
center, so these assets require customized security configuration
and administration. In the increasingly software-defined world, the
SSG has to help everyone explicitly configure cloud-specific security
features and controls (e.g., through cloud provider administration
consoles) comparable to those built with cables and physical
hardware in private data centers. Detailed knowledge about cloud
provider shared responsibility security models is always necessary to
ensure that the right cloud security controls remain in place.

[SE2.2: 57] Define secure deployment parameters and
configurations.
Create deployment automation or installation guides (e.g., standard
operating procedures) to help teams and customers install and
configure software securely. Deployment automation usually
includes a clearly described configuration for software artifacts and
the infrastructure-as-code (e.g., Terraform, CloudFormation, ARM
templates, Helm Charts) necessary to deploy them, including details
on COTS, open source, vendor, and cloud services components. All
deployment automation should be understandable by humans, not
just by machines, especially when distributed to customers who buy
the software.

[SE2.4: 39] Protect code integrity.
Use code protection mechanisms (e.g., code signing) that allow the
organization to attest to the provenance, integrity, and authorization
of important code. While legacy and mobile platforms accomplished

this with point-in-time code signing and permissions activity,
protecting modern containerized software demands actions in
various lifecycle phases. Organizations can use build systems to
verify sources and manifests of dependencies, creating their own
cryptographic attestation of both. Packaging and deployment
systems can sign and verify binary packages, including code,
configuration, metadata, code identity, and authorization to release
material. In some cases, organizations allow only code from their
own registries to execute in certain environments. With many DevOps
practices greatly increasing the number of people who can touch the
code, organizations should also use permissions and peer review
to govern code commits within source code management to help
protect integrity.

[SE2.5: 52] Use application containers to support security
goals.
The organization uses application containers to support its software
security goals. Simply deploying containers isn’t sufficient to gain
security benefits, while their planned use could support a tighter
coupling of applications with their dependencies, immutability,
integrity (see [SE2.4]), and some isolation benefits without the
overhead of deploying a full operating system on a virtual machine.
Containers are a convenient place for security controls to be applied
and updated consistently (see [SFD3.2]), and while they are useful in
development and test environments, their use in production provides
the needed security benefits.

[SE2.7: 42] Use orchestration for containers and virtualized
environments.
The organization uses automation to scale service, container,
and virtualized environments in a disciplined way. Orchestration
processes take advantage of built-in and add-on security features
(see [SFD2.1]), such as hardening against drift, secrets management,
RBAC, and rollbacks, to ensure that each deployed workload meets
predetermined security requirements. Setting security behaviors
in aggregate allows for rapid change when the need arises.
Orchestration platforms are themselves software that becomes part
of your production environment, which in turn requires hardening
and security patching and configuration—in other words, if you use
Kubernetes, make sure you patch Kubernetes.

[SE3.2: 19] Use code protection.
To protect intellectual property and make exploit development
harder, the organization erects barriers to reverse engineering its
software (e.g., anti-tamper, debug protection, anti-piracy features,
runtime integrity). For some software, obfuscation techniques
could be applied as part of the production build and release
process. In other cases, these protections could be applied at the
software-defined network or software orchestration layer when
applications are being dynamically regenerated post-deployment.
Code protection is particularly important for widely distributed
code, such as mobile applications and JavaScript distributed to
browsers. On some platforms, employing Data Execution Prevention
(DEP), Safe Structured Handling (SafeSEH), and Address Space
Layout Randomization (ASLR) can be a good start at making exploit
development more difficult, but be aware that yesterday’s protection
mechanisms might not hold up to today’s attacks.

46 BSIMM FOUNDATIONS REPORT – VERSION 13

[SE3.3: 11] Use application behavior monitoring and
diagnostics.
The organization monitors production software to look for
misbehavior or signs of attack. Go beyond host and network
monitoring to look for software-specific problems, such as
indications of malicious behavior, fraud, and related issues.
Application-level intrusion detection and anomaly detection systems
might focus on an application’s interaction with the operating system
(through system calls) or with the kinds of data that an application
consumes, originates, and manipulates. Signs that an application
isn’t behaving as expected will be specific to the software business
logic and its environment, so one-size-fits-all solutions probably won’t
generate satisfactory results. In some types of environments (e.g.,
PaaS), some of this data and the associated predictive analytics
might come from a vendor.

[SE3.6: 18] Create bills of materials for deployed software.
Create a BOM detailing the components, dependencies, and other
metadata for important production software. Use this BOM to help
the organization tighten its security posture, that is, to react with
agility as attackers and attacks evolve, compliance requirements
change, and the number of items to patch grows quite large. Knowing
where all the components live in running software—and whether
they’re in private data centers, in clouds, or sold as box products (see
[CMVM2.3])—allows for timely response when unfortunate events
occur.

[SE3.8: 0] Perform application composition analysis
on code repositories.

Use composition analysis results to augment software asset
inventory information with data on all components comprising
important applications. Beyond open source (see [SR2.4]), inventory
information (see [SM3.1]) includes component and dependency
information for internally developed (first-party), commissioned
code (second-party), and external (third-party) software, whether
that software exists as source code or binary. One common way of
documenting this information is to build BOMs. Doing this manually
is probably not an option—keeping up with software changes likely
requires toolchain integration rather than carrying this out as a point-
in-time activity. This information is extremely useful in supply chain
security efforts (see [SM3.5]).

Deployment: Configuration Management &
Vulnerability Management (CMVM)
The Configuration Management & Vulnerability Management practice
concerns itself with operations processes, patching and updating
applications, version control, defect tracking and remediation, and
incident handling.

[CMVM1.1: 114] Create or interface with incident
response.

The SSG is prepared to respond to an event or alert and is regularly
included in the incident response process, either by creating its
own incident response capability or by regularly interfacing with the
organization’s existing team. A standing meeting between the SSG
and the incident response team keeps information flowing in both
directions. Having prebuilt communication channels with critical
vendors (e.g., IaaS, SaaS, PaaS) is also very important.

[CMVM1.2: 100] Identify software defects found in
operations monitoring and feed them back to engineering.
Defects identified in production through operations monitoring
are fed back to development and used to change engineering
behavior. Useful sources of production defects include incidents, bug
bounty (see [CMVM3.4]), responsible disclosure (see [CMVM3.7]),
SIEMs, production logs, and telemetry from cloud security posture
monitoring, container configuration monitoring, RASP, and similar
products. Entering production defect data into an existing bug-
tracking system (perhaps by making use of a special security flag)
can close the information loop and make sure that security issues
get fixed. In addition, it’s important to capture lessons learned
from production defects and use these lessons to change the
organization’s behavior. In the best of cases, processes in the SSDL
can be improved based on operations data (see [CMVM3.2]).

[CMVM2.1: 95] Have emergency response.
The organization can make quick code and configuration changes
when software (e.g., application, API, microservice, infrastructure)
is under attack. An emergency response team works in conjunction
with application owners, engineering, operations, and the SSG to
study the code and the attack, find a resolution, and fix the production
code (e.g., push a patch into production, rollback to a known-good
state, deploy a new container). Often, the emergency response team
is the engineering team itself. A well-defined process is a must here,
but a process that has never been used might not actually work.

[CMVM2.2: 98] Track software defects found in operations
through the fix process.
Defects found in operations (see [CMVM1.2]) are entered into
established defect management systems and tracked through the
fix process. This capability could come in the form of a two-way
bridge between defect finders and defect fixers or possibly through
intermediaries, but make sure the loop is closed completely.
Defects can appear in all types of deployable artifacts, deployment
automation, and infrastructure configuration. Setting a security flag in
the defect-tracking system can help facilitate tracking.

[CMVM2.3: 62] Develop an operations software inventory.
The organization has a map of its software deployments and related
containerization, orchestration, and deployment automation code,
along with the respective owners. If a software asset needs to be
changed or decommissioned, operations or DevOps teams can
reliably identify both the stakeholders and all the places where the
change needs to occur. Common components can be noted so that
when an error occurs in one application, other applications sharing
the same components can be fixed as well. Building an accurate
representation of an inventory will likely involve enumerating at least
the source code, the open source incorporated both during the build
and during dynamic production updates, the orchestration software
incorporated into production images, and any service discovery or
invocation that occurs in production.

[CMVM3.1: 11] Fix all occurrences of software defects found
in operations.
When a security defect is found in operations (see [CMVM1.2]), the
organization searches for and fixes all occurrences of the defect,
not just the one originally reported. Doing this proactively requires
the ability to reexamine the entire operations software inventory

47 BSIMM FOUNDATIONS REPORT – VERSION 13

(see [CMVM2.3]) when new kinds of defects come to light. One way
to approach reexamination is to create a ruleset that generalizes
deployed defects into something that can be scanned for via
automated code review. In some environments, fixing a defect
might involve removing it from production immediately and making
the actual fix in some priority order before redeployment. Use of
orchestration can greatly simplify deploying the fix for all occurrences
of a software defect (see [SE2.7]).

[CMVM3.2: 19] Enhance the SSDL to prevent software
defects found in operations.
Experience from operations leads to changes in the SSDL (see [SM1.1]),
which can in turn be strengthened to prevent the reintroduction
of defects. To make this process systematic, incident response
postmortem includes a feedback-to-SSDL step. The outcomes of the
postmortem might result in changes such as to tool-based policy
rulesets in a CI/CD pipeline and adjustments to automated deployment
configuration (see [SE2.2]). This works best when root-cause analysis
pinpoints where in the software lifecycle an error could have been
introduced or slipped by uncaught (e.g., a defect escape). DevOps
engineers might have an easier time with this because all the players are
likely involved in the discussion and the solution. An ad hoc approach to
SSDL improvement isn’t sufficient for prevention.

[CMVM3.3: 18] Simulate software crises.
The SSG simulates high-impact software security crises to ensure
that software incident detection and response capabilities minimize
damage. Simulations could test for the ability to identify and mitigate
specific threats or, in other cases, begin with the assumption that a
critical system or service is already compromised and evaluate the
organization’s ability to respond. Planned chaos engineering can be
effective at triggering unexpected conditions during simulations.
The exercises must include attacks or other software security crises
at the appropriate software layer to generate useful results (e.g., at
the application layer for web applications and at lower layers for IoT
devices). When simulations model successful attacks, an important
question to consider is the time required to clean up. Regardless,
simulations must focus on security-relevant software failure, not
on natural disasters or other types of emergency response drills.
Organizations that are highly dependent on vendor infrastructure
(e.g., cloud service providers, SaaS, PaaS) and security features will
naturally include those things in crisis simulations.

[CMVM3.4: 26] Operate a bug bounty program.
The organization solicits vulnerability reports from external
researchers and pays a bounty for each verified and accepted
vulnerability received. Payouts typically follow a sliding scale linked
to multiple factors, such as vulnerability type (e.g., remote code
execution is worth $10,000 vs. CSRF is worth $750), exploitability
(demonstrable exploits command much higher payouts), or specific
service and software versions (widely deployed or critical services
warrant higher payouts). Ad hoc or short-duration activities, such as
capture-the-flag contests or informal crowdsourced efforts, don’t
constitute a bug bounty program.

[CMVM3.5: 13] Automate verification of operational
infrastructure security.
The SSG works with engineering teams to verify with automation the
security properties (e.g., adherence to agreed-upon security hardening)

of infrastructure generated from controlled self-service processes.
Engineers use self-service processes to create networks, storage,
containers, and machine instances, to orchestrate deployments
and to perform other tasks that were once IT’s sole responsibility. In
facilitating verification, the organization uses machine-readable policies
and configuration standards (see [SE2.2]) to automatically detect
issues and report on infrastructure that does not meet expectations. In
some cases, the automation makes changes to running environments
to bring them into compliance, but in many cases, organizations use a
single policy to manage automation in different environments, such as
in multi- and hybrid-cloud environments.

[CMVM3.6: 3] Publish risk data for deployable artifacts.
The organization collects and publishes risk information about the
applications, services, APIs, containers, and other software it deploys.
Whether captured through manual processes or telemetry automation,
published information extends beyond basic software security (see
[SM2.1]) and inventory data (see [CMVM2.3]) to include risk information.
This information usually includes constituency of the software (e.g.,
BOMs, [SE3.6]), what group created it and how, and the risks associated
with known vulnerabilities, deployment models, security controls, or
other security characteristics intrinsic to each artifact. This approach
stimulates cross-functional coordination and helps stakeholders take
informed risk management action. Making a list of risks that aren’t used
for decision support won’t achieve useful results.

[CMVM3.7: 20] Streamline incoming responsible
vulnerability disclosure.
Provide external bug reporters with a line of communication to
internal security experts through a low-friction, public entry point.
These experts work with bug reporters to invoke any necessary
organizational responses and to coordinate with the external
entities throughout the defect management lifecycle. Successful
disclosure processes require insight from internal stakeholders
such as legal, marketing, and public relations roles to simplify and
expedite decision-making during software security crises. Although
bug bounties might be important to motivate some researchers (see
[CMVM3.4]), proper public attribution and a low-friction reporting
process is often sufficient motivation for researchers to participate in
a coordinated disclosure. Most organizations will use a combination
of easy-to-find landing pages, common email addresses (security@),
and embedded product documentation when appropriate (security.
txt) as an entry point for external reporters to invoke this process.

[CMVM3.8: 0] Do attack surface management for
deployed applications.

Operations standards and procedures proactively minimize
application attack surfaces by using attack intelligence and
application weakness data to limit vulnerable conditions. Finding
and fixing software bugs in operations is important (see [CMVM1.2])
but so is finding and fixing errors in cloud security models, VPNs,
segmentation, security configurations for networks, hosts, and
applications, and so on to limit the ability to successfully attack
deployed applications. Combining attack intelligence (see [AM1.5])
with information about software assets (see [AM3.3]) and a
continuous view of application weaknesses helps ensure that attack
surface management keeps pace with attacker methods. SBOMs
(see [SE3.6]) are also an important information source when doing
attack surface management in a crisis.

48 BSIMM FOUNDATIONS REPORT – VERSION 13

APPENDICES

49 BSIMM FOUNDATIONS REPORT – VERSION 13

A. ROLES IN A SOFTWARE
SECURITY INITIATIVE

An SSI requires thoughtful staffing with both full-time
and dotted-line people. You can use the descriptions
below to help define roles and responsibilities that
accommodate your needs for execution and growth.

In Part 4 of this report, we provided a summary of the different roles
involved in implementation of the SSI. Here, we provide details and
data about those roles.

EXECUTIVE LEADERSHIP
Historically, security initiatives that achieve firm-wide impact are
sponsored by a senior executive who creates an SSG where software
security governance and testing are distinctly separate from software
delivery. Security initiatives without that executive sponsorship, by
comparison, have historically had little lasting impact across the
firm. By identifying a senior executive and putting them in charge of
software security, the organization can address two “Management
101” concerns: accountability and empowerment. FIGURE 5. PERCENTAGE OF SSGS WITH A CISO AS THEIR NEAREST

EXECUTIVE. Assuming new CISOs generally receive responsibilities for SSIs,
this data suggests that CISO role creation is also flattening out.

FIGURE 6. NEAREST EXECUTIVE TO SSG. Although many SSGs have a CISO as their nearest executive, we see a variety of executives overseeing software
security efforts in the 130 BSIMM13 firms.

BSIMM12BSIMM13 BSIMM11 BSIMM10

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

16

16

18

18

50

50

52

52

54

54

56

56

CISO

CPSO

COO

CIO

CSO

Tech Org

CTO

CFO

CRO

CPO

CAO

0%

10%

20%

30%

40%

50%

60%

BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7BSIMM6BSIMM-V

50 BSIMM FOUNDATIONS REPORT – VERSION 13

In BSIMM-V, we saw CISOs as the nearest executive in 21 of 67 firms,
which grew in BSIMM6 to 31 of 78, and again for BSIMM7 with 52 of
95. Since then, the percentage has remained relatively flat even as the
BSIMM community has grown, as shown in Figure 5.

If we look across all the executives nearest to SSG owners, not just
CISOs, we observe a large spread in the reporting path to executive
leadership for BSIMM10 through BSIMM13, as shown in Figure 6.
The larger green circles show by percentage the SSG leader’s nearest
executive in the BSIMM13 data pool, while smaller circles show the
percentages for previous BSIMMs. For example, a CISO is the closest
executive in 51% of organizations in the BSIMM13 community,
and that percentage ranged from 50% to 55% in BSIMM10 through
BSIMM12. For the BSIMM13 data pool, we no longer see SSGs
reporting to CRO (risk), CAO (assurance), CPO (privacy), and General
Counsel roles. Note that for BSIMM13, we added 27 firms and
removed 25, which also affects analysis of reporting chains. Of
course, not all people with the same title perform, prioritize, enforce,
or otherwise provide resources for the same efforts the same way
across various organizations.

CISOs in turn report to different executives among the 130 BSIMM13
firms. Figure 7 shows that CISOs report most commonly to CIOs (26
of 66, or almost 40% of the time) and report directly to the CEO less
than 11% of the time (7 of 66).

FIGURE 7. TO WHOM THE CISO REPORTS. In the BSIMM13 community,
the CISO reports to a variety of roles, with the most common being the CIO,
CTO, and a technology executive (e.g., head of engineering, architecture, or
software).

1%
3%

5%
6%

6%

11%

14%
15%

39%

CFO
CEO Technology

COO
CTO
CROLegal

CSO CIO

SOFTWARE SECURITY GROUP
LEADERS
SSG leaders are individuals in charge of day-to-day efforts in the 130
SSIs we studied for BSIMM13. They have a variety of titles, such as
the following:

• Application Security Architect
• Application Security Manager
• Director Application Security
• Director Cybersecurity
• Director IT Risk Management
• Director IT Shared Services
• Director Product Security
• Director Security Assurance
• Executive Director Product Security
• Information Assurance Director
• Lead Security Architect
• Manager Software Security Engineering
• Product Security AppSec
• Security Architect
• Security Director
• Security Engineering Manager
• Senior Director Product Security
• SVP Product Security & Technology
• VP Product and Application Security
• VP Security Architecture
• VP Security Compliance

As shown in Figure 8, SSG leaders are typically one or two hops from
their nearest executive (e.g., a CxO or related technology organization
title). In addition, we observed that this nearest executive is usually a
further one or two hops away from the CEO. When the SSG leader is
an executive themselves, which happens 10% of the time (13 out of
130), they are CISOs almost 70% of the time (9 out of 13), with other
titles being CTO, CPSO (Chief Product Security Officer), and CSO.

FIGURE 8. SSG LEADERSHIP REPORTING CHAINS. SSG leaders are typically
three or four hops away from the CEO. When SSG leaders are themselves an
executive, they most often have a security role—CISO, CPSO (Chief Product
Security Officer), CSO—but some have a technology role such as CTO.

51 BSIMM FOUNDATIONS REPORT – VERSION 13

SOFTWARE SECURITY GROUP (SSG)
Each of the 130 initiatives in BSIMM13 has an SSG—an organizational
group dedicated to software security. In fact, without an SSG,
successfully carrying out BSIMM activities across a software portfolio
is very unlikely, so the creation of an SSG is a crucial first step. The
SSG might start as a team of one—just the SSG leader—and expand
over time. The SSG might be entirely a corporate team, entirely an
engineering team, or an appropriate hybrid. The team’s name might
also have an appropriate organizational focus, such as application
security group or product security group, or perhaps DevSecOps.

Some SSGs are highly distributed across a firm whereas others are
centralized. Even within the most distributed organizations, we find that
software security activities are almost always coordinated by an SSG.

Although no two of the 130 firms we examined had exactly the same
SSG structure, we did observe some commonalities. At the highest
level, SSGs seem to come in five overlapping structures:

• Organized to provide software security services

• Organized around setting and verifying adherence to policy

• Designed to mirror business unit organizations

• Organized with a hybrid policy and services approach

• Structured around managing a matrixed team of experts doing
software security work across the development or engineering
organizations.

Table 4 shows some SSG-related statistics across the 130 BSIMM13
firms, but note that a handful of large outliers affect the numbers this
year. The “Notes - No Outliers” column shows the effect of removing

outliers, or the top 10 firms, for that SSG characteristic. Refer to
Appendix H for more details on how SSGs evolve over time.

SATELLITE (SECURITY CHAMPIONS)
In addition to the SSG, many SSIs have identified individuals (often
developers, testers, architects, and cloud and DevOps engineers)
who are a driving force in improving software security but are not
directly employed in the SSG. We collectively refer to them as the
satellite, and many organizations refer to this group as their software
security champions. A satellite can enable an SSI to scale its efforts
while reducing dependency on the SSG team, and there appears to
be a correlation between a higher BSIMM score and the presence of
satellite, as shown in Figure 9. Having satellite members carry out
software security activities empowers engineering teams to own
their software security deliverables and removes SSG members from
the engineering critical path.

Satellite members are often chosen for software portfolio
coverage (with one or two members in each engineering group),
and sometimes for reasons such as technology stack coverage or
geographical reach. The satellite can act as a sounding board for the
feasibility and practicality of proposed software security changes
and improvements. Understanding how SSI governance changes
might affect project timelines and budgets helps the SSG proactively
identify potential frictions and minimize them.

Successful satellite groups get together regularly to compare notes,
learn new technologies, and expand stakeholder understanding of
the organization’s software security challenges. Motivated individuals
often share digital work products, such as sensors, code, scripts,

THE SOFTWARE SECURITY GROUP

STATISTICS AVERAGE MEDIAN LARGEST SMALLEST NOTES – NO OUTLIERS
SSG Size 25.7 8 892 1 Average drops to 19.0 (1 outlier)

SSG Member to Developer Ratio 3.01% 0.88% 51.43% 0.06% Average drops to 2.63% (1 outlier)
Average drops to 1.45% (no top 10)

SSG Member to Developer Ratio
(800+ developers) – 64 firms 1.03% 0.56% 14.86% 0.06% 800 – median number of dev

SSG Member to Developer Ratio
(less than 800 developers) – 66 firms 5.11% 1.79% 51.43% 0.33%

Number of Developers 3,146 800 100,000 25 Average drops to 2,395 (1 outlier)
Average drops to 1,362 (no top 10)

Number of Applications 1,118 159 40,000 1 Average drops to 816 (1 outlier)
Average drops to 475 (no top 10)

SSG Age 5.0 4.0 23.0 0.1

Satellite to Developer Ratio 4.20% 1.24% 57.14% 0% Average drops to 3.79% (1 outlier)
Average drops to 2.44% (no top 10)

Satellite to Developer Ratio (800+ developers)
– 64 Firms 3.19% 1.50% 25.63% 0%

Satellite to Developer Ratio
(less than 800 developers) – 66 Firms 5.26% 1.20% 57.14% 0%

SSG to Application Ratio 40.64% 6% 1100% 0.01% Average drops to 14.80% (2 outliers)
Average drops to 9.6% (no top 10)

TABLE 4. THE SOFTWARE SECURITY GROUP. We calculated the ratio of full-time SSG members to developers for the entire data pool by averaging the individual
ratio for of each participating firm. When planning the size and structure of your own SSG, consider the number of developers and applications to determine what
resources you need to scale the SSI. In the Notes column, we show the impact of removing outliers in the data.

52 BSIMM FOUNDATIONS REPORT – VERSION 13

tools, and security features, rather than, for example, getting together
to discuss enacting a new policy. Specifically, these proactive
champions are working bottom-up and delivering software security
features and awareness through implementation.

For more information about security champions, refer to Appendix G.

KEY STAKEHOLDERS
SSIs are truly cross-departmental efforts that involve a variety of
stakeholders:

• Builders, including developers, architects, and their managers,
must practice security engineering, taking some responsibility
for both the definition of “secure enough” as well as ensuring that
what’s delivered achieves the desired posture. An SSI requires
collaboration between the SSG and these engineering teams to
carry out the activities described in the BSIMM.

• Testers typically conduct functional and feature testing, but
moving on to include security testing is very useful. Some
testers are beginning to anticipate how software architectures
and infrastructures can be attacked and are working to find an
appropriate balance between automated and manual testing to
ensure adequate security testing coverage.

• Operations teams must continue to design, defend, and maintain
resilient environments because software security doesn’t end
when software is “shipped.” In accelerating trends, development
and operations are collapsing into one or more DevOps teams, and
the business functionality delivered is becoming very dynamic.
This means that an increasing amount of security effort, including
infrastructure controls and security configuration, is becoming
software defined (and that software should also be secure).

• Administrators must understand the distributed nature of modern
systems, create and maintain secure configurations, and practice the
principle of least privilege, especially when it comes to host, network,
infrastructure, and cloud services for deployed applications.

• Executives and middle management, including business owners
and product managers, must understand how early investment
in security design and analysis affects the degree to which users
will trust their products. Business requirements should explicitly
address security needs, including security-related compliance. Any
sizable business today depends on software to work; thus, software
security is a business necessity. Executives are also the group
that must provide resources for new efforts that directly improve
software security and must actively support digital transformation
efforts related to infrastructure- and governance-as-code.

• Data privacy specialists form an integral part of the software security
effort in some firms, combining forces with security specialists when
engaging with engineering. They might be responsible for analysis of
privacy regulations, definition of privacy requirements, and tracking
of PII and other data categories. This has become increasingly
common in response to regulations such as GDPR.

• Vendors, including those who supply on-premises products,
custom software, and SaaS, are increasingly subjected to SLAs
and reviews (such as the Payment Card Industry [PCI] Software
Security Framework [SSF] and the BSIMMsc) to help ensure
that their products are the result of an SSDL. Of course, not all
software (e.g., open source) comes from a vendor.

FIGURE 9. THE SATELLITE AND THE BSIMM SCORE. Eighty-one percent of
the top-scoring firms in the BSIMM13 community have a satellite (security
champions). In contrast, fewer than 30% of bottom-scoring firms have one.

27%
of the bottom 20% of
firms have a satellite

62%
of the middle 60% of
firms have a satellite

81%
of the top 20% of

firms have a satellite

53 BSIMM FOUNDATIONS REPORT – VERSION 13

B. HOW TO BUILD OR UPGRADE
AN SSI

Putting someone in charge is just a first step in
building an SSI. There will be iterations of planning,
growth, measurement, and bridge-building. You can
use the processes below to guide your SSI’s growth
from newly emerging through dependable maturity.

The BSIMM is not just a long-term software security study, or a
single-purpose SSI benchmarking tool—it also eases management
and evolution for anyone in charge of software security, whether that
person is currently in a central governance-focused position or in a
more local engineering-focused team. Firms of all maturity levels,
sizes, and verticals use the BSIMM as a reference guide when
building new SSIs and when evolving their initiatives through various
maturity and stakeholder ownership phases over time.

We often refer to SSIs we’ve seen as being in one of three broad
states—emerging, maturing, and enabling—which we describe as
follows:

• Emerging. An emerging SSI has defined its initial strategy, has
chosen foundational activities (e.g., such as those observed most
frequently in the community), has acquired some resources, and
has a general roadmap for the next 18 months. SSI leaders are
likely resource-constrained on both people and budget, so the
SSG is usually small and uses compliance requirements or other
executive mandates to drive participation and to continue adding
activities. These leaders require strong, visible, and ongoing
executive support to manage frictions with key stakeholders who
are resistant to adopting foundational process discipline.

• Maturing. A maturing SSI has an in-place team, defined
processes for interacting with software security stakeholders,
and a documented software security approach that is clearly
connected to executive expectations for both managing software
security risk and progressing along a roadmap to scale security
capabilities. A maturing SSI is learning from its existing efforts,
likely making consistent, incremental improvements in the SSDL
and key security integrations. Example improvements include:

 - Reducing friction across business and development stakeholders
 - Protecting people’s productivity gains through automation

investments
 - Building bridges to other parts of the firm through evangelism,

defect discovery, software supply chain protection, and incident
response

 - Undergoing a “shift everywhere” transformation to test software
artifacts as soon as appropriate

 - Adjusting the security strategy to keep pace with changes in
risk and risk management processes

 - Finding solutions to systemic problems and making them
broadly available as reusable, pre-approved IP

 - Responding quickly when attacks or other circumstances
uncover a lack of resiliency

• Enabling. An enabling SSI ensures that all stakeholders can meet
their objectives without putting the organization at unacceptable
risk. The following are important principles for an enabling SSI:

 - There is a continuous evangelizing about the best way for
all stakeholders to meet security expectations, ensuring that
the path of least resistance for development and deployment
is also the most secure path, and investing to proactively
overcome various people, process, technology, and cultural
growing pains.

 - The evolutionary needs of the SSI are harmonized with the
goals of business initiatives, such as digital transformation,
open source use, and cloud adoption.

 - A mature and integrated response to process and technical risk
invokes an innovation engine to make reasonably future-proof
solutions.

 - The use of culturally engrained approaches to automation,
blameless review of failures, and protecting critical resources—
people, for example—allow more time to tackle security
innovation.

 - A platform-engineering perspective removes security activity
silos and ensures that all telemetry and benefits are available to
all stakeholders everywhere.

It’s compelling to imagine that organizations could reach a state of
emerging, maturing, or enabling simply by applying a certain number
or mix of activities to specific percentages of the staff and software
portfolio, but that doesn’t happen. Experience shows that SSIs usually
reach an emerging stage by organizing all the ad hoc software
security efforts they’re already doing into one program. The SSIs
usually proceed to the maturing stage by focusing on the activities
that are right for them without regard for the total activity count. This
is especially true when considering the complexity of scaling some
activities across 100, 1,000, or 10,000+ applications or people.

Organizations rarely move their entire SSI from emerging to
enabling all at once. We have seen SSIs form, break up, and re-form
over time, so an SSI might shift between emerging, maturing, and
enabling a few times over the years. In addition, capabilities within
an SSI (e.g., supply chain security, training) likely won’t progress
through the same states at the same rate. We’ve noted cases
where one capability—vendor management, for example—might
be emerging, while the defect management capability is maturing,
and the defect discovery capability is in an enabling stage. There
is also constant change in tools, skill levels, external expectations,
attackers, attacks, resources, culture, and everything else. You can
use the BSIMM13 community scorecard (see Figure 17) to see the
frequency with which the BSIMM activities are observed across all
participants, but use your own metrics to determine if you’re making
the progress that’s right for you.

STARTING AN SSI: GETTING TO AN
EMERGING STATE
It’s unlikely that any organization is doing nothing about software
security. Even an organization without a formal initiative or a defined
owner likely has some software security policy, application security
testing, and processes for working with stakeholders. Provided below
are actionable steps for consolidating that ad hoc effort into an
emerging SSI. Keep in mind that most SSIs are multiyear efforts with
real budget, mandate, and ownership behind them. In addition, while all
initiatives look different and are tailored to fit a particular organization,
most initiatives share common core activities (see Table 7).

54 BSIMM FOUNDATIONS REPORT – VERSION 13

Figure 10 organizes the steps and suggested timeline to establish
an emerging SSI, along with the associated BSIMM activities. It also
includes a notional level of effort anticipated across people and
budget, as well as estimated duration, all on a 1 – 3 scale. The effort
and cost to reach each of these goals will vary across companies,
of course, but is primarily affected by risk objectives, organizational
structure, and portfolio size. For example, deploying on-site static
analysis across 10 applications using a common pipeline in one
business unit will likely have a lower level of effort than deploying
that static analysis across 10 applications built in 10 toolchains in 10
business units.

Note that the getting started roadmap shown in Figure 10 includes
some activities that have a high impact for emerging SSIs even
though they appear to be rarely observed in the BSIMM community.
This happens because newly added BSIMM activities start with an
observation rate of zero (e.g., [ST3.6] added for BSIMM11). These
are foundational activities, even if organizations are just starting to
add them to their journeys. Importantly, the steps described here
are not specific to where in the organization the SSG is created. The
SSG can be centralized in a governance group or an engineering
group, or it can be decentralized across both. Regardless, governance
and engineering functions will have to cooperate to ensure the
achievement of organizational software security goals.

Note that an SSG leader with a young initiative (e.g., less than 18
months) working on foundations should not expect or set out to
quickly implement too many BSIMM activities. Firms can absorb only
a limited amount of technology, hiring, cultural, and process change

at any given time. The BSIMM13 data shows that SSIs having an age
of 18 months or less at the time of assessment (28 of 130 firms)
have an average score of 32.9.

Following are some details on the steps shown in Figure 10, and
these steps include activity references. The references are meant
to help the reader understand the associations between the topic
being discussed and one or more BSIMM activities. Note that the
references don’t mean the topic being discussed is fully equivalent
to the activity. For example, when we say, “…initial inventory [AM1.2]”
(i.e., Use a data classification scheme for software inventory), we
don’t mean that having the initial inventory encompasses the totality
of [AM1.2], just that having it will likely be something you’ll do on
your way to implementing [AM1.2]. To continue using [AM1.2] as an
example, most organizations will not set about implementing this
activity and get it all done all at once. Instead, an organization will
likely create an initial classification scheme and inventory, implement
a process to keep the inventory up to date, and then decide how to
create a view that’s meaningful for stakeholders. Every activity has
its own nuances and components, and every organizational evolution
path for its emerging SSI will be unique.

Create a Software Security Group
The most important first step for all SSIs is to have a dedicated
SSG that can get resources and drive organizational change, even
if it’s a group of one person coordinating organizational efforts.
The SSG must then understand which software security goals are
important to the business and establish policy and process to drive
everyone in that direction. At a minimum, the SSG should identify the

PHASE
Create a software
security group

Document and
socialize the SSDL

Inventory
applications in the
SSG’s purview

Apply infrastructure
security in software
environments

Deploy defect
discovery for high-
priority applications

Publish and
promote the
process

GOVERNANCE
CP1.1

SM1.1
SM2.7
AM2.5
CR2.7

SE2.2

SM1.4
SM3.4
CP1.3
SR1.1

ENABLEMENT
T1.1

SFD1.1
SR1.2 AM1.2

CP2.1
CMVM2.3

AA1.4
SM1.3
SR1.2

FLAW AND
DEFECT
DISCOVERY

SFD1.2 SR2.4

AA1.1
CR1.4
SR2.4
ST1.4
PT1.1

CMVM3.4

ST3.6

OPERATIONS CMVM1.1
SE1.2
SE1.3
SE2.7

● ● ●

●

● ●

● ● ●

 ● ●

● ● ●

● ● ●

● ● ●

 ●

● ● ●

● ● ●

 ●

● ● ●

● ● ●

The arrow of time (x-axis) is a notional order of efforts. Although this diagram appears to depict a waterfall process, many of these efforts will be happening at
the same time and some will be repeated multiple times.

FIGURE 10. GETTING STARTED ROADMAP WITH NOTIONAL EFFORTS. This roadmap is supplemented with relative effort levels so that organizations can plan
the resources needed for their emerging SSI.

Budget DurationPeople

55 BSIMM FOUNDATIONS REPORT – VERSION 13

risk management, compliance, and contractual requirements that
the organization must adhere to [CP1.1]. Using awareness training
[T1.1] to then help ensure that everyone understands their security
responsibility is a common approach.

The SSG must work with engineering teams to establish a common
understanding of the approach to software security. The approach
might be to set up automated defect discovery, address security
questions from developers with reusable security features [SFD1.1],
and act as an advisor for design decisions [SFD1.2].

Document and Socialize the SSDL
Publish security policies and standards through established
governance, risk, and compliance (GRC) channels to complement
existing IT security standards or create those channels as necessary.
The SSG can also create a security portal (e.g., website, wiki) that
houses SSDL information centrally [SR1.2]. Similar to the approach
for prioritizing defect discovery efforts by categorizing attacks and
bugs [AM2.5, CR2.7], we observe these firms driving initial standards
creation from industry top risks, leveraging sources such as MITRE,
ISO, and NIST to form baseline requirements.

Getting the word out about the organization’s top risks and what
can be done about them is a key part of the SSG’s job. We observe
these leaders using every channel possible (e.g., town halls, brown
bags, communities of practice forums, messaging channels) to
socialize the software security message and raise awareness of the
SSDL [SM2.7].

Inventory Applications in the SSG’s Purview
One of the first activities for any SSG is to create an initial inventory
of the application portfolio under its purview [AM1.2, CMVM2.3].
As a starting point, the inventory should include each application’s
important characteristics (e.g., programming language, architecture
type, open source used [SR2.4]). Particularly useful for monitoring

and incident response activities [CMVM1.1], many organizations will
include relevant operational data in the inventory (e.g., where the
application is deployed, owners, emergency contacts).

Inventory efforts tend to favor a top-down approach in the beginning,
usually starting with a questionnaire to elicit data from business
managers who serve as application owners, then using tools to find
open source software. The SSG also tends to focus on understanding
where sensitive data resides and flows (e.g., PII inventory) [CP2.1]
and the resulting business risk level associated with the application
(e.g., critical, high, medium, low).

When working with engineering teams, these efforts commonly
attempt to extract software inventory data from the tools used to
manage IT assets. By scraping these software and infrastructure
configuration management databases (CMDBs) or code repositories,
the SSG crafts an inventory brick by brick rather than top-down.

Maintaining an application inventory is a capability to be built over
time rather than a one-time effort. To remain accurate and current,
the inventory must be regularly monitored and updated. As with all
data currency efforts, it’s important to make sure the data isn’t overly
burdensome to collect and is periodically spot-checked for validity.
Organizations should favor automation for application discovery and
management whenever possible.

Apply Infrastructure Security in Software
Environments
Bad infrastructure security can undermine good software security,
which means the SSG must ensure host and network security basics
are in place [SE1.2] as well as cloud security controls [SE1.3]. Security
engineers might begin by conducting this work manually, then baking
these settings and changes into their software-defined infrastructure
scripts [SE2.2] to ensure both consistent use within a development
team and scalable sharing across the organization.

Forward-looking organizations that have adopted software and
network orchestration technologies [SE2.7] (e.g., Kubernetes, Envoy,
Istio) get maximum impact from them with the efforts of even an
individual contributor, such as a security-minded DevOps engineer.
Though many of the technologies in which security engineers specify
hardening and security settings are human-readable, engineering
groups don’t typically take the time to extract and distill a document-
based security policy from these codebases.

Deploy Defect Discovery for High-Priority
Applications
Regardless of business drivers, one of the quickest ways of
transitioning unknown risk to managed risk is through defect
discovery. Use automated tools, both static and dynamic, to provide
fast, regular insight into the portfolio security posture, with experts
doing detailed testing for important applications [AA1.1, CMVM3.4].
While not necessarily done for the entire application portfolio,
conducting some targeted vulnerability discovery to get a feel for
the current risk posture allows firms to motivate the necessary
conversations with stakeholders to gain buy-in and prioritize
remediation. Organizations tend to determine their high-priority
applications via risk ranking [AA1.4]. Phase in a combination of
manual testing techniques against these high-priority applications
and rely on automated testing techniques for portfolio coverage.

CHECKLIST FOR EMERGING SSIs
1. Create an SSG. Put a dedicated group in charge and

give them resources.

2. Document and Socialize the SSDL. Tell all
stakeholders the expectations for software security.

3. Inventory Applications. Decide on what you’re going
to focus on first, then apply good risk management.

4. Apply Infrastructure Security. Don’t put good
software on bad systems or in poorly constructed
networks (cloud or otherwise).

5. Deploy Defect Discovery. Determine the issues in
today’s in-progress and production applications, then
plan for tomorrow.

6. Publish and Promote. Roll out the secure SDLC and
promote it both bottom-up and top-down.

7. Progress to the Next Step. Pick new activities to
focus on, whether they are emerging or moving to
the maturing stage.

56 BSIMM FOUNDATIONS REPORT – VERSION 13

Static and dynamic software testing techniques each provide unique
views into an application’s security posture. Static analysis can
look for issues inside the code the organization develops [CR1.4]
and inside third-party components [SR2.4]. Dynamic application
security tests [ST1.4] can uncover immediately exploitable issues
and help provide steps to reproduce attacks. In addition, QA groups
can help ensure that development streams are adhering to security
expectations. All these testing results assist with prioritization and
displaying impact to executive leadership.

Manual testing efforts generally start by bringing in third-party
assessors [PT1.1] on a regular cadence, either upon major
milestones or, more commonly, as a periodic out-of-band exercise
to assess the most critical applications. Even where an internal
penetration testing function exists, a third party periodically bringing
in a unique perspective will be beneficial.

Note that engineering groups will tend to favor empowering pipelines
and testers with automation and allow engineering leadership or
individual engineering teams to define some aspects of mandatory
testing and remediation timelines. It’s important to ensure static,
dynamic, and manual testing creates minimal unnecessary friction in
engineering processes.

Publish and Promote the Process
With a strategy in hand, an understanding of the portfolio, and
security expectations set with engineering teams, the SSG
documents the SSDL [SM1.1] and begins collecting telemetry
[SM1.4]. The SSDL should include clearly documented goals,
roles, responsibilities, and activities. The most usable SSDLs
include process diagrams and provide contextual details for each
stakeholder. Many organizations seeking to consolidate ad hoc
efforts into an emerging SSI will find a variety of SSDLs in use
across engineering teams. In these cases, the new SSDL might be
a replacement for all such approaches, but it might also have some
parts that are abstract enough to account for all processes until they
can be rolled into the new approach. Publication of this process is
also a good time for the SSG to start a software security hub where
the SSG can disseminate knowledge about the process and about
software security as a whole [SR1.2].

In a top-down approach, organizations favor creating policy [CP1.3]
and standards [SR1.1] that can be followed and audited like any other
business process. Rather than documents, however, engineering
teams might favor implementing their part of an SSDL inside of
pipelines [SM3.4] and scripts [ST3.6], or by prescribing reusable
security blocks that meet expectations. Over time, the SSG will also
have to deliver some policy in the form of governance-as-code in
engineering pipelines [SM1.4].

While executives have likely been engaged to get the SSI to this point,
this is a good time to ensure that they’re being regularly kept up to
date with software security. Remember, executive teams need to
understand not only how the SSI is performing but also how other
firms are solving software security problems and the ramifications of
not investing in software security [SM1.3].

Progress to the Next Step in Your Journey
Usually done as part of moving to the mature stage, the SSG then
proceeds to scale the SSI. For example, this scaling might be done
through creating a champions program, improving the inventory
capability based on lessons learned, automating the basics, doing
more prevention, and then repeating. As the initiative matures and the
business grows, there will be new challenges for the SSG to address,
so it will be crucial to ensure that feedback loops are in place for the
program to consistently measure its progress and maturity.

LESSONS FROM THE COMMUNITY
The purpose of the BSIMM is to measure SSIs. While the BSIMM
doesn’t directly measure SSI architecture, evolution, or motivations,
our experience with over 254 organizations since 2008 has
highlighted cultural differences in SSI implementations.

No SSI is built in a vacuum. Whether your SSI is just emerging or has
some capabilities in the maturing stage, knowledge from both the
struggles and successes of other organizations can save you time
and disruption. As software security becomes an important goal for
any organization, multiple internal groups might each be taking their
own approach to their goals. Understanding and harmonizing these
cultural and technological views into a single SSI is important to
long-term success.

Whether your SSI is just emerging or
has some capabilities in the maturing
stage, knowledge from both the
struggles and successes of other
organizations can save you time
and disruption.

Cultures
Whether implicitly or explicitly, organizations choose the path for their
software security journey by tailoring goals, methods, tools, resources,
and approaches according to their individual cultures. There have
always been two distinct cultures in the BSIMM community:

• Organizations where the SSG was started by executives in a
central corporate group (e.g., under a CISO) as a full-time role
and chartered with software security governance, including
compliance, testing, remediation monitoring, and risk
management. This SSG stayed in the corporate organization
chart, had the power to enact organization-wide policy, and
expanded its efforts outward through, for example, tooling and
security champions. This path was seen most often in regulated
industries such as banking, insurance, FinTech, and healthcare
but was also seen in ISV and technology firms.

57 BSIMM FOUNDATIONS REPORT – VERSION 13

• Organizations where the SSG was started by engineering
technical leadership (e.g., senior application architects) as a
part-time role and focused on technical software security efforts,
such as configuration hardening, technology stack standards,
secure coding standards, and security tool integration, which
was often done for a single tool chain or project. As evangelism
efforts convinced other development projects to use the same
technical controls, the technical leadership usually worked with a
CTO, VP Engineering, or other technology executive to establish
a centralized security function within the engineering domain.
The centralized function—often still part time—then used its
influence to establish its own type of governance, which was
often peer pressure to set some development process, create
and manage security standards, and ensure that the silos of
engineering, testing, and operations were aware of and adhered
to general security expectations. This path was most often seen
in technology, cloud, and ISV firms but was also seen in other
verticals.

Regardless of its origin point, both cultures usually arrived at an SSI
that is driven by a centralized, dedicated SSG whose function is to
ensure that appropriate software security activities are happening
across the portfolio. That is, nearly all SSIs that are more than a
couple years old are driven top-down by governance objectives,
even those started by engineering for engineering. Evangelism,
peer pressure, and local implementations go only so far in formally
implementing software security risk management as a culture.

Today, as you start or plan a major revamp of your SSI, just get
started. You can start in corporate, or you can start in engineering.
You can start with governance as a top priority, or you can focus on
some technical controls. In any case, history seems to show that
SSIs gravitate toward a focus on policy along with process that
ensures adherence. Yours likely will as well.

A New Wave in Engineering Culture
Over the past few years, we’re seeing a new wave of software
security efforts emerging from engineering teams. These teams are
usually responsible for delivering a product or value stream—such as
is common within ISVS—or maintaining a technology domain—such
as the “cloud security group” or a part of some digital transformation
group. Some organizations refer to these collective security efforts as
site reliability engineering, DevSecOps, or GitOps security, and some
have no specific name for it at all.

At least three factors are driving these new efforts:

• The confluence of process friction, unpredictable impacts on
delivery schedules, adversarial internal relationships, and a
growing number of human-intensive processes from existing
SSIs; top-down governance doesn’t fit culturally or technologically
with new engineering processes.

• The demands and pressures from modern software delivery
practices, be they cultural such as Agile and DevOps, or
technology-based such as cloud- and orchestration-based; gates
and checkpoints built for maximum assurance often cause
unacceptable disruption in processes built for speed.

• The shift to engineer self-service, typically seen as self-service
IT (cloud), configuration and deployment (DevOps), and
development (open source use and continuous integration); the
ability to instantiate infrastructure and pipelines is also the ability
to integrate your own security tools and configurations.

This new software security effort is frequently happening
independently from the lessons learned that an experienced SSG
might provide. In addition, this effort is driving many application
lifecycle processes ever faster, regardless of whether the
organization is ready to do software security risk management at
that speed.

The governance-oriented approach we’ve seen for years, along
with this new wave of engineering-oriented efforts, are increasingly
coexisting within the same organization. In addition, they often have
competing objectives, which is pulling traditional governance-driven
programs into modern and evolving hybrids. Figure 11 shows this
ongoing SSG evolution.

The important lesson here is that this is likely happening in your
organization as well—perhaps narrowly in a few development teams
or perhaps broadly as a culture shift across all of engineering.
Taking an SSI to the maturing stage—and possibly to enabling, as
well—requires acknowledging this engineering effort and building
bridges between all stakeholders who have ownership of the different
aspects of software security. It also requires acknowledging that
these different stakeholders have different business objectives and
different views of risk, risk management, and risk tolerance relative
to those objectives. Ensuring that everyone can meet their objective
while also keeping the organization safe is a major goal for every SSI.

FIGURE 11. SSG EVOLUTION. These groups might have started in corporate
or in engineering but, in general, settled on enforcing compliance with tools.
The new wave of engineering efforts is shifting where SSGs live, what they
focus on, who is accountable for what, and how stakeholders work together.

Executive-led
Compliance-oriented

Corporate Engineering

Centralized governance
(SSG)

Corporate
(GRC)

Modern hybrids
(DevSecOps)

Engineering
(Self-Service)

2nd-Generation
Engineering-led efforts

(DevOps)

Engineering-led
Procedure-oriented

Ea
rly

 2
00

0s
Ci

rc
a

20
06

To
da

y

58 BSIMM FOUNDATIONS REPORT – VERSION 13

Understanding More About DevOps
The DevOps movement has highlighted the tensions between
established SSIs and engineering efforts that are addressing
software security their way in their own processes. Given different
objectives, we find that the outcomes desired by these two
approaches are usually very different. Rather than the top-down,
compliance-driven style of governance-minded teams, these newer
engineering-minded teams are more likely to prototype good ideas
for securing software, which results in the creation of even more
code and infrastructure on the critical path to delivery (e.g., security
features, home-spun vulnerability discovery, security guardrails).
Here, security is just another aspect of quality, and availability is just
another aspect of resilience.

To keep pace with both software development process changes
(e.g., CI/CD adoption) and technology architecture changes (e.g.,
cloud, container, and orchestration adoption), engineering efforts are
independently evolving both how they apply software security activities
and, in some cases, what activities they apply. The changes these
engineering teams are making include downloading and integrating
their own security tools, spinning up self-service cloud infrastructure
and virtual assets as they need them, following policy on the use
of open source software in applications but routinely downloading
many other open source packages to build and manage software
and processes, and so on. Engineering efforts and their associated
fast-paced evolutionary changes are putting governance-driven SSIs
in a race to retroactively document, communicate, and even automate
the knowledge they hold so it can be useful to everyone.

Cloud service providers, software pipeline and orchestration
platforms, and even QA tools have also begun adding their view of
software security in their feature sets. For example, organizations are
seeing platforms like GitHub, Azure DevOps, and GitLab beginning
to compete by using security as a differentiator. Evolving vendor-
provided features might be signaling to both the marketplace and
adopting organizations that vendors believe security must be included
in developer tools and that engineering security initiatives should feel
comfortable relying on these external platforms as the basis of their
security telemetry and even their governance workflows.

Again, the important lesson is that this is likely happening in your
organization as well. Your path to an emerging or mature SSI must
account for this federation of software security responsibilities and
use of external providers, and enable every stakeholder to meet their
business and security objectives.

Convergence as a Goal
We frequently observe governance-oriented SSIs planning centrally,
seeking to proactively define an ideal risk posture during their
emerging or early maturity phases. Initial uptake of the provided
controls (e.g., security testing) is usually by those teams that have
experienced real security issues and are looking for help, while other
teams might take a wait-and-see approach.

We also observe that engineering efforts prototype controls
incrementally, building on existing tools and techniques that already
drive software delivery. Gains happen quickly in these emerging
efforts, perhaps given the steady influx of new tools and techniques
introduced by engineering but also helped along by the fact that each
team is usually working in a homogenous culture on a single application
and technology stack. Even so, these groups sometimes struggle to
institutionalize durable gains, usually because the engineers have not yet
been able to turn capability into either secure-by-default functionality or
automation-friendly assurance—at least not beyond the most frequently
encountered security issues and beyond their own spheres of influence.

Engineering groups tend to view security as an enabler of software
features and code quality. These groups recognize the need for
having security standards but tend to prefer incremental steps
toward governance-as-code as opposed to a large-manual-steps-
with-human-review approach to enforcement. This tends to result in
engineers building security features and frameworks into architectures,
automating defect discovery techniques within a software delivery
pipeline, and treating security defects like any other defect. Traditional
human-driven security decisions are modeled into a software-
defined workflow as opposed to being written into a document
and implemented in a separate risk workflow handled outside of
engineering. In this type of culture, it’s not that the traditional SDLC
gates and risk decisions go away, it’s that they get implemented
differently and usually have different goals compared to those of the
governance groups. SSGs, and likely champions groups as well, that

FIGURE 12. MOVING FROM EMERGING TO MATURING. Building an
emerging SSI usually focuses on collecting activities into a single program.
Moving from emerging to maturing requires ongoing iterative improvements
and expansions. Piloting new capabilities (e.g., security champions, software
supply chain risk management) likely requires reapplying the emerging
approach for a specific set of activities.

Build new capability

Emerging SSI

 Pilot

Plan

 Defi ne

 In
te

gr
at

e

Optim
ize

SSI MATURING
CYCLE

59 BSIMM FOUNDATIONS REPORT – VERSION 13

begin to support this approach will speed up both convergence of
various efforts and alignment with corporate risk management goals.

To summarize the lessons from the community, scaling an emerging
SSI across a software portfolio is hard for everyone, and stakeholders
need to understand the lessons above before investing heavily in the
journey from emerging to maturing. Today’s evolving cultural and
technological environments require a concerted effort at converging
governance and engineering objectives to create a cohesive SSI that
ensures the software portfolio is appropriately protected.

MATURING AN SSI: HARMONIZING
OBJECTIVES
This section provides an expanded view of an SSI journey. With
the foundations established, SSG leaders shift their attention to
scaling risk-based controls across the entire software portfolio and
enabling development to find and fix issues early in the software
lifecycle. The SSI has likely reached the emerging stage across
multiple capabilities (see Figure 10) and is maturing specific
aspects of its initiative. That maturing includes both adding new
activities and scaling existing ones (see Figure 12). It especially
includes building bridges between various software security efforts
in corporate and engineering groups.

This section on maturing an SSI repeats some of the foundational
BSIMM activities from the “Starting an SSI: Getting to an Emerging
State” section. We do this because most organizations won’t treat
SSI creation as a waterfall process. Instead, they will, for example,
establish policy, set up a champions program, deploy defect
discovery tools, and so on in overlapping, incremental improvement
cycles. In addition, many organizations will determine in the emerging
phase that some activities can wait a bit while engaging in other,
more necessary, software security efforts. In either case, this is a
good place for a reminder to keep working on foundational activities.

Establish Leadership and Objectives
Ensure that there is a single SSI and provide the proper resources
for the owner tasked with shepherding the organization so the
group can meet risk management objectives. At this point, the
SSI might include multiple SSGs and owners (e.g., across major
products or business units), and working to harmonize these efforts
must be a key goal. Ensure that the SSI is supported by a full-time
team—an SSG—that can scale across the organization. Establishing
this structure might not involve hiring staff immediately, but
it will likely entail assembling a full-time team to implement
key foundational activities central to supporting the assurance
objectives further defined and institutionalized in policy [CP1.3],
standards [SR1.1], and processes [SM1.1].

The SSG will require a mix of skills, including technical security
knowledge, scripting and coding experience, and architectural skill.
As organizations migrate toward their view of DevSecOps, the SSG
might build its own software in the form of security automation,
defect discovery in CI/CD pipelines, and infrastructure- and
governance-as-code. SSGs often need to mentor, train, and work
directly with developers, so communication skills, teaching ability,
and practical knowledge are must-haves for at least some SSG

staff. Essentially, the SSG is a group of people—whether one person,
10, or 100—who must improve the security posture of the software
portfolio and all the processes that generate it, so management
skills, risk management perspectives, an ability to contribute to
engineering value streams, and an ability to break silos are critical
success factors.

Within engineering teams, we see individuals taking on leadership
roles such as product security engineer or security architect, while
possessing functional titles such as Site Reliability Engineer, DevOps
Engineer, or similar. Their responsibilities often include comparison
and selection of security tools, definition of secure design guidelines
and acceptable remediation actions, and implementation of
infrastructure-as-code for secure packaging, delivery, and operations.
Harmonizing leadership views across the SSG and engineering is a
critical step to success.

Expand Security Controls
Use existing knowledge to choose the important software security
activities to initiate, scale, or improve. This knowledge includes SSI
scope, compliance, technology stacks, and deployment models, as
well as the issues uncovered in defect discovery efforts. Common
activity choices are policy [CP1.3], SDLC checkpoint conditions
[SM1.4], testing [AA1.2, CR1.4, ST1.4, PT1.3, SR2.4], and training
[T1.7], which are typically built out in a quick-win approach. When
choosing and implementing new controls, it’s often easier to get buy-
in by showing adherence to well-known guidance (e.g., BSIMM, NIST
SSDF, regulators) or choosing security controls that align with general
industry guidance (e.g., OWASP, CWE, analysts). Ensure that activity
selection includes an appropriate mix of preventive [SR1.1, SFD2.1]
and detective controls (e.g., testing) to maximize positive impact on
the organization’s risk posture.

Essentially, the SSG is a group of
people—whether one person, 10, or
100—who must improve the security
posture of the software portfolio.

Engage Development
As noted throughout this section, engineering teams are likely
already thinking about various aspects of security related to
design, configuration, infrastructure, and deployment. Engaging
development begins by creating mutual awareness of how the SSG
and development teams see the next steps in maturing security
efforts. Successfully engaging early on relies on bridge-building
and credentialing the SSG as competent in development culture,
toolchains, and technologies. It also includes building awareness
around which security capabilities constitute an SSDL and beginning
to determine how those capabilities are expected to be conducted.
Building consensus on what role each department will play in
improving capabilities over the next evolutionary cycle greatly
facilitates success.

60 BSIMM FOUNDATIONS REPORT – VERSION 13

To facilitate tool adoption, the SSG might dedicate some portion
of their efforts or build a team of security champions [SM2.3] to
serve as tool mentors to help development teams not only integrate
the tools but also triage and interpret results [CR1.7]. Although the
primary objective is to embed security leadership inside development,
these individuals also serve as both key points of contact and
interface points for the SSG to interact with engineering teams and
monitor progress. Because they are local to teams, champions also
facilitate defect management goals, such as tracking recurring issues
to drive remediation [PT1.2]. The SSG can also roll out software
security training [T2.9] tailored to the most common security defects
identified through AST, often cataloged by technology stack and
coding language.

Inventory and Select In-Scope Software
Take an enterprise-wide perspective when building a view into the
software portfolio. Engaging directly with application business
owners by, for example, using questionnaire-style data gathering is
a good start. It’s useful to focus on applications (with owners who
are responsible for risk management) as the initial unit of inventory
measure, but remember that many vital software components aren’t
applications (e.g., libraries, APIs, scripts, pipeline tests, infrastructure-
as-code). In addition to understanding application characteristics (e.g.,
programming language, architecture type such as web or mobile, the
revenue generated) as a view into risk, capture and maintain the same
information for all software. Focus on understanding where sensitive
data resides and flows (e.g., PII inventory) [CP2.1] along with the
status of active development projects.

Rather than taking an organizational structure and owner-based
view, engineering teams usually attempt to understand software
inventory by extracting it from the same tools they use to manage
their IT assets. They usually combine two or more of the following
approaches to software inventory creation:

• Discovery, import, and visualization of assets managed by the
organization’s cloud and data center virtualization management
consoles

• Scraping and extracting assets and tags from infrastructure-as-
code held in code repositories, as well as processing metadata
from container and other artifact registries

• Outside-in web and network scanning for publicly discoverable
assets, connectivity to known organizational assets, and related
ownership and administrative information

With a software inventory in hand, impose security requirements
using formalized risk-based approaches to cover as much of the
software portfolio as possible. Using simple criteria (e.g., software
size, regulatory constraints, internal vs. external facing, data
classification), assign a risk classification (e.g., high, medium, low)
to each application [AA1.4]. Define the initial set of software and
project teams with which to prototype security activities. Although
application risk classifications are often the primary driver, we have
observed firms using other information, such as whether a major
change in application architecture is being undertaken (e.g., shift to
a cloud-native architecture) or whether the software contains critical
code (e.g., cryptography, proprietary business logic). Firms find it

beneficial to include in the selection process some engineering teams
that are already doing some security activity organically.

Engineering teams might have a different idea of what in-scope
software means relative to the security efforts they already have
underway—if they’re working on one application, then that application
is likely to be their scope. When required to prioritize specific
applications’ components, we observe engineering teams using the
following as input:

• Velocity. Teams conducting active new development or major
refactoring

• Regulation. Those services or data repositories to which specific
development or configuration requirements for security or privacy
apply [CP1.1, CP1.2]

• Opportunity. Software that solves critical technical challenges or
that adopts key technologies

Prioritized software is then usually the target for test automation
[ST2.5], vulnerability discovery tooling, or security features [SFD1.1].

Enforce Security Basics Everywhere
Commonly observed today regardless of SSG age are basic security
controls enforced in hosts and networks [SE1.2] and in cloud
environments [SE1.3]. A common strength for organizations that
have good controls over the infrastructure assets they manage,
these basics are accomplished through a combination of IT

CHECKLIST FOR MATURING SSIs
1. Establish Leadership and Objectives. Formalize

staffing, objectives, budgets, and approach, then tell
everybody about it.

2. Expand Security Controls. Increase program impact
through policy, testing, training, and other quick wins.

3. Engage Development. Use security champions
to build bridges and harmonize software security
objectives.

4. Inventory and Select In-Scope Software. Expand
the application inventory to include all software, not
just applications.

5. Enforce Security Basics Everywhere. Use
automation to ensure that you run software only on
good systems (cloud or otherwise).

6. Integrate Defect Discovery and Prevention. Use
automation and integration to scale and shift defect
discovery and prevention everywhere.

7. Upgrade Incident Response. Ensure that software
security experts are involved in all software security
events and improve the program from lessons
learned.

8. Repeat and Improve. Growth does not happen in a
straight line. You will have to revisit, remeasure, and
re-plan multiple times.

61 BSIMM FOUNDATIONS REPORT – VERSION 13

provisioning controls, written policy, prebuilt and tested golden
images, sensors and monitoring capabilities, server hardening and
configuration standards, infrastructure-as-code, and entire groups
dedicated to patching. As firms migrate private infrastructure to
cloud environments, organizations must carefully reestablish their
assurance-based controls to maintain and verify adherence to
security policy. To keep tabs on the growing number of virtual assets
created by engineering groups and their automation, organizations
often must deploy custom solutions [AM3.3] to overcome limitations
in a cloud provider’s ability to meet desired policy.

Organizations rarely move their
entire SSI from emerging to
enabling all at once.

Governance and engineering teams often cooperate to build in
enforced security basics for infrastructure and cloud environments,
leveraging containers [SE2.5], infrastructure-as-code [SE2.2], and
orchestration [SE2.7]. Over time, these security basics expand to
include internal development environments, toolchains, deployment
automation, code repositories, and other important infrastructure.

Integrate Defect Discovery and Prevention
Initial defect discovery efforts tend to be one-off (by using centralized
commercial tools [CR1.2]) and to target the most critical applications,
with a plan to scale efforts over time. Scaling prioritization might be
selected for compliance or contractual reasons, or because it applies
to a phase of the software lifecycle (e.g., shift everywhere to do threat
modeling at design time [AA1.1], composition analysis on software
repositories [SE3.8], SAST during development [CR1.4], DAST in
preproduction [ST1.4], and penetration testing on deployed software
[PT1.1, PT1.3]). The point is to automate and scale the chosen
defect discovery activities. However, scaling through automation
and integration must come without disrupting CI/CD pipelines (e.g.,
due to tools having long execution times), without generating large
volumes of perceived false positives, and without impeding delivery
velocity (e.g., through opaquely breaking builds or denying software
promotion) except under clear or agreed-upon circumstances.

In addition to defect discovery, engineering teams might favor
prevention controls they can apply to software directly in the form
of security features [SFD1.1]. These controls can take the form of
microservices (e.g., authentication or other identity and access
management) [SE2.5], common product libraries (e.g., encryption)
[SFD2.1], or even infrastructure security controls (e.g., controlling
scope of access to production secrets through vault technologies).

Some engineering groups have taken steps to tackle the prevention
of certain classes of vulnerability in a wholesale manner [CMVM3.1],

using development frameworks that preclude them. Ask security-
minded engineers for their opinion about framework choices and
empower them to incorporate their understanding of security
features and security posture tradeoffs.

Upgrade Incident Response
Ensure that defined incident response processes include SSG
representation [CMVM1.1]. Determining whether an incident has
software security roots requires specific skills that are not often
found in traditional IT groups. Work with engineering teams,
especially DevOps engineers, to help make the connections between
those events and alerts raised in production and the associated
artifacts, pipelines, repositories, and responsible teams. This
traceability allows these groups to effectively prioritize security
issues on which the SSG will focus. Feedback from the field on what
is happening greatly enhances the top N lists ([AM2.5, CR2.7]) that
many organizations use to help establish priorities.

Security engineers who are in development teams and more familiar
with application logic might be able to facilitate instructive monitoring
and logging. They can coordinate with DevOps engineers to generate
in-application defenses that are tailored for business logic and
expected behavior, therefore likely being more effective than, for
example, WAF rules. Introducing such functionality will in turn provide
richer feedback and allow a more tailored response to application
behavior [SE3.3].

Organizations deploying cloud-native applications using orchestration
might respond to incidents (or to data indicating imminent
incidents) with an increase in logging, perhaps by adjusting traffic
to the distribution of image types in production. Much of this is
possible only with embedded security engineers who are steeped
in the business context of a development team and have good
relationships with that team’s DevOps engineers; satellite members
(security champions) can be a good resource for these individuals.
Under these circumstances, incident response moves at the speed
of a well-practiced single team [CMVM2.1] rather than that of an
interdepartmental playbook.

Repeat and Improve
As noted earlier, working through activity growth for emerging and
maturing SSIs probably won’t happen in a straight line. There’ll be
changes in priorities, resources, and responsibilities, along with
changes in attackers, attacks, technologies, and everything else. It’s
necessary to take time periodically to determine how well the SSI is
performing against business objectives and adjust as necessary.

As a reminder, organizations rarely move their entire SSI from
emerging to enabling all at once. Different parts of the SSI will shift
between emerging, maturing, and enabling a few times over the years
with different timing that SSG leaders will need to plan for.

62 BSIMM FOUNDATIONS REPORT – VERSION 13

ENABLING SSIs
Achieving software security scale—of expertise, portfolio coverage,
tool integration, vulnerability discovery accuracy, process consistency,
and so on—remains a top priority. However, firms often scale one
or two capabilities (e.g., defect discovery, training) but fail to scale
others (e.g., architecture analysis, vendor management). Given
mature activities, there’s a treasure trove of data to be harvested
and included in KPI and KRI reporting dashboards. Then executives
start asking the very difficult questions: Are we getting better? Is our
implementation working well? Where are we lagging? How can we
go faster with less overhead? What’s our message to the Board? The
efficacy of an SSI will be supported by ongoing data collection and
metrics reporting that seeks to answer such questions [SM3.3].

Progress Isn’t a Straight Line
As mentioned earlier, organizations don’t always progress from
maturing to enabling in one try or on a straight path, for example,
some SSI capabilities might be enabling while others are still
emerging or maturing. Based on our experience, firms with some
portion of their SSI operating in an enabling state have likely been in
existence for longer than three years. Although we don’t have enough
data to generalize enabling SSIs, we do see common themes for
those that strive to reach this state:

• Top N Risk Reduction. Everyone relentlessly identifies and closes
top N weaknesses, placing emphasis on obtaining visibility into
all sources of vulnerability, whether in-house developed code,
open source code [SR2.7], vendor code [SR3.2], toolchains, or any
associated environments and processes [SE1.2, SE1.3]. These top
N weaknesses are most useful when specific to the organization,
evaluated at least annually, and tied to metrics to prioritize SSI
efforts that improve risk posture.

• Tool Customization. Security leaders place a concerted effort
into tuning tools (e.g., customization for static analysis, fuzzing,
penetration testing) to improve integration, accuracy, consistency,
and depth of analysis [CR2.6, ST2.6, AM3.2, PT3.2]. Customization
focuses not only on improving result fidelity and applicability
across the portfolio but also on pipeline integration and timely
execution, improving ease of use for everyone.

• Feedback Loops. Loops are created between SSDL activities to
improve effectiveness as deliverables from activities ebb and
flow with each other. For example, an expert within QA might
leverage architecture analysis results when creating security test
cases [ST3.3]. Likewise, feedback from the field might be used to
drive SSDL improvement through enhancements to a hardening
standard [CMVM3.2]. The concept of routinely conducting
blameless postmortems to find root causes and drive remediation
seems to be gaining ground in some firms.

• Data-Driven Governance. The more mature groups instrument
everything to collect data that in turn becomes metrics for
measuring SSI efficiency and effectiveness against KRIs and KPIs
[SM3.3]. As an example, a metric such as defect density might
be leveraged to track performance of individual business units
and application teams. Metrics choices are very specific to each
organization and also evolve over time.

Push for Agile-Friendly SSIs
In recent years, we’ve observed governance-oriented teams—often
out of necessity to remain in sync with engineering teams—evolving
to become more Agile-friendly:

• Putting “Sec” in DevOps is becoming a mission-critical objective.
SSG leadership routinely partners with IT, cloud, development, QA,
and operations leadership to ensure that the SSI mission aligns
with DevOps values and principles.

• SSG leaders realize they need in-house talent with coding
expertise to improve not only their credibility with engineering but
also their understanding of modern software delivery practices.
Job descriptions for SSG roles now mention experience and
qualification requirements such as cloud, mobile, containers,
and orchestration security, as well as coding. We expect this
list to grow as other topics become more mainstream, such
as architecture and testing requirements around serverless
computing and single-page application approaches.

• To align better with DevOps values (e.g., agility, collaboration,
responsiveness), SSG leaders are beginning to replace traditional
people-driven activities with people-optional, pipeline-driven
automated tasks. This often comes in the form of automated
security tool execution, bugs filed automatically to defect
notification channels, builds flagged for critical issues, and
automated triggers to respond to real-time operational events.

• Scaling outreach and expertise through the implementation of an
ever-growing satellite is viewed as a short-term rather than long-
term goal. Organizations report improved responsiveness and
engagement as part of DevOps initiatives when they’ve localized
security expertise in the engineering teams. Champions are also
becoming increasingly sophisticated in building reusable artifacts
(e.g., security sensors) in development and deployment streams
to directly support SSI activities.

• SSG leaders are partnering with operations to implement
application-layer production monitoring and automated
mechanisms for responding to security events. There is a high
degree of interest in consuming real-time security events for data
collection and analysis to produce useful metrics.

In summary, engineering teams have likely taken an enabling
approach from the beginning. Their security efforts are contributions
from engineers who deliver software early and often, constantly
improving it rather than relying on explicit strategy backed by
top-down policies. They make their software available to everyone to
prevent future issues and use evangelism to encourage uptake. They
review production failures and make changes, often with automation,
to their toolchains and processes. That said, perceptions of business
and technical risk between corporate and engineering groups often
differ in substantial ways. Bringing the groups together to share
responsibilities for software security, as well as definitions of and
goals for needed risk management, while enabling broad stakeholder
productivity is a primary goal for any SSI.

63 BSIMM FOUNDATIONS REPORT – VERSION 13

C. DETAILED VIEW OF THE BSIMM
FRAMEWORK

The BSIMM framework and data model evolve over
time to accurately represent actual software security
practices. Understanding these changes will help you
set strategic directions for your own SSI.

In Part 5, we introduced the BSIMM framework. Here, we explore it in
more detail, including the methodology of how we created the model,
how it evolved over time, and how we updated it for BSIMM13.

As a descriptive model, the only goal of the BSIMM is to observe
and report. We like to say we visited many restaurants to see what
was happening and observed that “there are three chicken eggs in
an omelet.” Note that the BSIMM does not extrapolate to say, “all
omelets must have three eggs,” “only chicken eggs make acceptable
omelets,” “omelets must be eaten every day,” or any other value
judgements. We offer simple observations, simply reported.

Of course, during our assessment efforts across hundreds of
organizations, we also make qualitative observations about how SSIs
are evolving and report many of those as trends, insights, analysis,
and other topical discussions both in this document and within the
BSIMM community.

Our “just the facts” approach is hardly novel in science and
engineering, but in the realm of software security, it has not
previously been applied at this scale. Other work around SSI
modeling has either described the experience of a single organization
or offered prescriptive guidance based on a combination of personal
experience and opinion.

During our assessment efforts across
hundreds of organizations, we make
qualitative observations about how
SSIs are evolving and report many of
those as insights, analysis, and other
discussions in this document and in
the BSIMM online community.

THE BSIMM SKELETON
The BSIMM skeleton provides a way to view the model at a glance
and is useful when assessing an SSI. The skeleton is shown in
Figure 13, organized by domains and practices. More complete
descriptions of the activities and examples are available in Part 6 of
this document.

CREATING BSIMM13 FROM BSIMM12
BSIMM13 includes updated activity descriptions, data from firms
in multiple vertical markets, and a longitudinal study. For BSIMM13,
we added 27 firms and removed 25, resulting in a data pool of 130
firms. In addition, in the time since we launched BSIMM12, 17 firms
conducted reassessments to update their scorecards, and we
assessed additional business units for five firms.

As shown below, we used the resulting observation counts to refine
activity placement in the framework, which resulted in moving
six activities to different levels. In addition, we added three newly
observed activities, resulting in a total of 125 activities in BSIMM13:

• [T3.3 Host software security events] became T2.10

• [T3.4 Require an annual refresher] became T2.11

• [SR3.1 Control open source risk] became SR2.7

• [AA1.3 Have SSG lead design review efforts] became AA2.4

• [CR1.6 Use centralized defect reporting to close the knowledge
loop] became CR2.8

• [SE2.6 Implement cloud security controls] became SE1.3

• [SM3.5 Integrate software supply chain risk management] was
added to the model

• [SE3.8 Perform application composition analysis on code
repositories] was added to the model

• [CMVM3.8 Do attack surface management for deployed
applications] was added to the model

We also carefully considered but did not adjust [CP2.5 Ensure
executive awareness of compliance and privacy obligations] or
[AM3.3 Monitor automated asset creation] at this time; we will do so
if the observation rates continue to increase.

64 BSIMM FOUNDATIONS REPORT – VERSION 13

GOVERNANCE

STRATEGY & METRICS COMPLIANCE & POLICY TRAINING

[SM1.1] Publish process and evolve as
necessary. [CP1.1] Unify regulatory pressures. [T1.1] Conduct software security awareness

training.

[SM1.3] Educate executives on software
security. [CP1.2] Identify privacy obligations. [T1.7] Deliver on-demand individual training.

[SM1.4] Implement security checkpoints and
associated governance. [CP1.3] Create policy. [T1.8] Include security resources in

onboarding.

[SM2.1] Publish data about software security
internally and use it to drive change. [CP2.1] Build a PII inventory. [T2.5]

Enhance satellite (security
champions) through training and
events.

[SM2.2] Enforce security checkpoints and
track exceptions. [CP2.2] Require security sign-off for

compliance-related risk. [T2.8] Create and use material specific to
company history.

[SM2.3] Create or grow a satellite (security
champions). [CP2.3] Implement and track controls for

compliance. [T2.9] Deliver role-specific advanced
curriculum.

[SM2.6] Require security sign-off prior to
software release. [CP2.4] Include software security SLAs in all

vendor contracts. [T2.10] Host software security events.

[SM2.7] Create evangelism role and perform
internal marketing. [CP2.5] Ensure executive awareness of

compliance and privacy obligations. [T2.11] Require an annual refresher.

[SM3.1] Use a software asset tracking
application with portfolio view. [CP3.1] Document a software compliance

story. [T3.1] Reward progression through
curriculum.

[SM3.2] Make SSI efforts part of external
marketing. [CP3.2] Ensure compatible vendor policies. [T3.2] Provide training for vendors and

outsourced workers.

[SM3.3] Identify metrics and use them to drive
resourcing. [CP3.3] Drive feedback from software

lifecycle data back to policy. [T3.5] Provide expertise via open
collaboration channels.

[SM3.4] Integrate software-defined lifecycle
governance. [T3.6]

Identify new satellite members
(security champions) through
observation.

[SM3.5] Integrate software supply chain risk
management.

INTELLIGENCE

ATTACK MODELS SECURITY FEATURES & DESIGN STANDARDS & REQUIREMENTS

[AM1.2] Use a data classification scheme for
software inventory. [SFD1.1] Integrate and deliver security

features. [SR1.1] Create security standards.

[AM1.3] Identify potential attackers. [SFD1.2] Application architecture teams
engage with the SSG. [SR1.2] Create a security portal.

[AM1.5] Gather and use attack intelligence. [SFD2.1] Leverage secure-by-design
components and services. [SR1.3] Translate compliance constraints to

requirements.

[AM2.1] Build attack patterns and abuse
cases tied to potential attackers. [SFD2.2] Create capability to solve difficult

design problems. [SR2.2] Create a standards review process.

[AM2.2] Create technology-specific attack
patterns. [SFD3.1]

Form a review board or central
committee to approve and maintain
secure design patterns.

[SR2.4] Identify open source.

[AM2.5] Maintain and use a top N possible
attacks list. [SFD3.2] Require use of approved security

features and frameworks. [SR2.5] Create SLA boilerplate.

[AM2.6] Collect and publish attack stories. [SFD3.3] Find and publish secure design
patterns from the organization. [SR2.7] Control open source risk.

[AM2.7] Build an internal forum to discuss
attacks. [SR3.2] Communicate standards to vendors.

[AM3.1] Have a research group that develops
new attack methods. [SR3.3] Use secure coding standards.

[AM3.2] Create and use automation to mimic
attackers. [SR3.4] Create standards for technology

stacks.

[AM3.3] Monitor automated asset creation.

65 BSIMM FOUNDATIONS REPORT – VERSION 13

SSDL TOUCHPOINTS

ARCHITECTURE ANALYSIS CODE REVIEW SECURITY TESTING

[AA1.1] Perform security feature review. [CR1.2] Perform opportunistic code review. [ST1.1] Perform edge/boundary value
condition testing during QA.

[AA1.2] Perform design review for high-risk
applications. [CR1.4] Use automated code review tools. [ST1.3] Drive tests with security requirements

and security features.

[AA1.4] Use a risk methodology to rank
applications. [CR1.5] Make code review mandatory for all

projects. [ST1.4] Integrate opaque-box security tools
into the QA process.

[AA2.1] Perform architecture analysis using a
defined process. [CR1.7] Assign code review tool mentors. [ST2.4] Drive QA tests with AST results.

[AA2.2] Standardize architectural
descriptions. [CR2.6] Use custom rules with automated

code review tools. [ST2.5] Include security tests in QA
automation.

[AA2.4] Have SSG lead design review efforts. [CR2.7] Use a top N bugs list (real data
preferred). [ST2.6] Perform fuzz testing customized to

application APIs.

[AA3.1] Have engineering teams lead AA
process. [CR2.8] Use centralized defect reporting to

close the knowledge loop. [ST3.3] Drive tests with design review results.

[AA3.2] Drive analysis results into standard
architecture patterns. [CR3.2] Build a capability to combine AST

results. [ST3.4] Leverage code coverage analysis.

[AA3.3] Make the SSG available as an AA
resource or mentor. [CR3.3] Create capability to eradicate bugs. [ST3.5] Begin to build and apply adversarial

security tests (abuse cases).

[CR3.4] Automate malicious code detection. [ST3.6] Implement event-driven security
testing in automation.

[CR3.5] Enforce secure coding standards.

DEPLOYMENT

PENETRATION TESTING SOFTWARE ENVIRONMENT CONFIGURATION MANAGEMENT &
VULNERABILITY MANAGEMENT

[PT1.1] Use external penetration testers to
find problems. [SE1.1] Use application input monitoring. [CMVM1.1] Create or interface with incident

response.

[PT1.2] Feed results to the defect
management and mitigation system. [SE1.2] Ensure host and network security

basics are in place. [CMVM1.2]
Identify software defects found in
operations monitoring and feed them
back to development.

[PT1.3] Use penetration testing tools
internally. [SE1.3] Implement cloud security controls. [CMVM2.1] Have emergency response.

[PT2.2] Penetration testers use all available
information. [SE2.2] Define secure deployment

parameters and configurations. [CMVM2.2] Track software bugs found in
operations through the fix process.

[PT2.3] Schedule periodic penetration tests
for application coverage. [SE2.4] Protect code integrity. [CMVM2.3] Develop an operations software

inventory.

[PT3.1] Use external penetration testers to
perform deep-dive analysis. [SE2.5] Use application containers to support

security goals. [CMVM3.1] Fix all occurrences of software bugs
found in operations.

[PT3.2] Customize penetration testing tools. [SE2.7] Use orchestration for containers and
virtualized environments. [CMVM3.2] Enhance the SSDL to prevent

software bugs found in operations.

[SE3.2] Use code protection. [CMVM3.3] Simulate software crises.

[SE3.3] Use application behavior monitoring
and diagnostics. [CMVM3.4] Operate a bug bounty program.

[SE3.6] Create bills of materials for deployed
software. [CMVM3.5] Automate verification of operational

infrastructure security.

[SE3.8] Perform application composition
analysis on code repositories. [CMVM3.6] Publish risk data for deployable

artifacts.

[CMVM3.7] Streamline incoming responsible
vulnerability disclosure.

[CMVM3.8] Do attack surface management for
deployed applications.

FIGURE 13. THE BSIMM SKELETON. Within the SSF, the 125 activities are organized into 12 practices within the four BSIMM domains.

66 BSIMM FOUNDATIONS REPORT – VERSION 13

As concrete examples of how the BSIMM functions as an
observational model, consider the activities that are now SM3.3 and
SR3.3, which both started as level 1 activities. The BSIMM1 activity
[SM1.5 Identify metrics and use them to drive resourcing] became
SM2.5 in BSIMM3 and is now SM3.3 due to its observation rate
remaining fairly static while other activities in the practice became
observed much more frequently. Similarly, the BSIMM1 activity [SR1.4
Use secure coding standards] became SR2.6 in BSIMM6 and is now
SR3.3 as its observation rate has decreased.

FIGURE 14. NUMBER OF OBSERVATIONS FOR [AA3.2] AND [CR3.5] OVER TIME. [AA3.2 Drive analysis results into standard design patterns] had zero
observations during BSIMM7 and BSIMM8, while [CR3.5 Enforce secure coding standards] decreased to zero observations from BSIMM8 to BSIMM12 (the number
of observations increased back to three in BSIMM13). Currently, the only activities with zero observations are the three activities added in BSIMM13.

0

1

2

3

4

5

BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7

[AA3.2] [CR3.5]

OBSERVATIONS

ACTIVITY BSIMM7 BSIMM8 BSIMM9 BSIMM10 BSIMM11 BSIMM12 BSIMM13
SE3.4 (now SE2.5) 0 4 11 14 31 44 52

SE3.5 (now SE2.7) 0 5 22 33 42

SE3.6 0 3 12 14 18

SE3.7 (now SE1.3) 0 9 36 59 79

SM3.4 0 1 6 5

AM3.3 0 4 6 11

CMVM3.5 0 8 10 13

ST3.6 0 2 3

CMVM3.6 0 0 3

CMVM3.7 0 20

SM3.5 0

SE3.8 0

CMVM3.8 0

TABLE 5. NEW ACTIVITIES. Some activities have seen exceptional growth (highlighted in orange) in observation counts, likely demonstrating their widespread
utility. [SE3.7], highlighted in gray, is the first activity to migrate from level 3 (very uncommon) to level 1 (common).

OBSERVATIONS

ACTIVITY BSIMM7 BSIMM8 BSIMM9 BSIMM10 BSIMM11 BSIMM12 BSIMM13
SE3.4 (now SE2.5) 0 4 11 14 31 44 52

SE3.5 (now SE2.7) 0 5 22 33 42

SE3.6 0 3 12 14 18

SE3.7 (now SE1.3) 0 9 36 59 79

SM3.4 0 1 6 5

AM3.3 0 4 6 11

CMVM3.5 0 8 10 13

ST3.6 0 2 3

CMVM3.6 0 0 3

CMVM3.7 0 20

SM3.5 0

SE3.8 0

CMVM3.8 0

In BSIMM13, we have the first activity that migrated from level 3
to level 1—[SE1.3 Implement cloud security controls], which was
introduced in BSIMM9. While the relative growth of [SE2.5 Use
application containers to support security goals] has slowed down,
it is one of the potential candidates to migrate from level 3 to level 1
over the next couple of years. See Table 5 for the observation growth
in activities that were added since BSIMM7.

67 BSIMM FOUNDATIONS REPORT – VERSION 13

WHERE DO OLD ACTIVITIES GO?
We continue to ponder the question, “Where do activities go when
no one does them anymore?” In addition to [CR3.5 Enforce secure
coding standards] (shown in Figure 14), we’ve noticed that the
observation rate for other seemingly useful activities has decreased
significantly in recent years:

• [T3.6 Identify new satellite members (security champions)
through observation] observed in 11 of 51 firms in BSIMM4 but
only in seven of 130 firms in BSIMM13

• [SFD3.3 Find and publish secure design patterns from the
organization] observed in 14 of 51 firms in BSIMM4 but only in
seven of 130 firms in BSIMM13

• [SR3.3 Use secure coding standards] observed in 23 of 78 firms
in BSIMM6 but only in 17 of 130 firms in BSIMM13

We believe there are two primary reasons why observations
for some activities have decreased toward zero over time.
First, some activities have become part of the culture and
drive different behavior—for example, choosing satellite
members might become a more organic part of the
SSDL without requiring extra effort in identifying satellite
members [T3.6 Identify new satellite members (security
champions) through observation] to grow that team [SM2.3
Create or grow a satellite (security champions)]. Second,
some activities don’t yet fit tightly with the evolving

engineering culture, and the activity effort currently
causes too much friction. For example, continuously going
to engineering teams to find secure design patterns
[SFD3.3 Find and publish secure design patterns from the
organization] might unacceptably delay key development
processes.

It might also be the case that evolving SSI and DevOps
architectures are changing the way some activities are
getting done. If an organization’s use of purpose-built
architectures, development kits, and libraries is sufficiently
consistent, for example, perhaps it’s less necessary to lean
on prescriptive coding standards [CR3.5 Enforce secure
coding standards] as a measure of acceptable code.

As a point of culture-driven contrast, we see significant
increases in observation counts for activities such as [SE1.3
Implement cloud security controls], [SE2.5 Use application
containers to support security goals], and [SE2.7 Use
orchestration for containers and virtualized environments],
likely for similar reasons that we see lower counts for the
other activities above. The engineering culture has shifted
to be more self-service and to include increased telemetry
that produces more data for everyone to use. We keep
a close watch on the BSIMM data pool and will make
adjustments as needed, which might include dropping an
activity from the model.

MODEL CHANGES OVER TIME
Being a unique, real-world reflection of actual software security practices, the BSIMM naturally changes over time. While each release of the
BSIMM captures the current dataset and provides the most current guidance, reflection upon past changes can help clarify the ebb and flow of
specific activities. Table 6 shows the activity moves, adds, and deletes that have occurred since the BSIMM’s creation.

CHANGES FOR BSIMM13 (125 ACTIVITIES)

• T3.3 Host software security events became T2.10
• T3.4 Require an annual refresher became T2.11
• SR3.1 Control open source risk became SR2.7
• AA1.3 Have SSG lead design review efforts became AA2.4
• CR1.6 Use centralized defect reporting to close the knowledge loop became CR2.8
• SE2.6 Implement cloud security controls became SE1.3
• SM3.5 Integrate software supply chain risk management added to the model
• SE3.8 Perform application composition analysis on code repositories added to the model
• CMVM3.8 Do attack surface management for deployed applications added to the model

CHANGES FOR BSIMM12 (122 ACTIVITIES)

• SM1.2 Create evangelism role and perform internal marketing became SM2.7
• T1.5 Deliver role-specific advanced curriculum became T2.9
• ST2.1 Integrate black-box security tools into the QA process became ST1.4
• SE3.5 Use orchestration for containers and virtualized environments became SE2.7
• CMVM3.7 Streamline incoming responsible vulnerability disclosure added to the model

CHANGES FOR BSIMM11 (121 ACTIVITIES)

• T2.6 Include security resources in onboarding became T1.8
• CR2.5 Assign tool mentors became CR1.7
• SE3.4 Use application containers to support security goals became SE2.5
• SE3.7 Ensure cloud security basics became SE2.6
• ST3.6 Implement event-driven security testing in automation added to the model
• CMVM3.6 Publish risk data for deployable artifacts added to the model

68 BSIMM FOUNDATIONS REPORT – VERSION 13

CHANGES FOR BSIMM10 (119 ACTIVITIES)

• T1.6 Create and use material specific to company history became T2.8
• SR2.3 Create standards for technology stacks moves to become SR3.4
• SM3.4 Integrate software-defined lifecycle governance added to the model
• AM3.3 Monitor automated asset creation added to the model
• CMVM3.5 Automate verification of operational infrastructure security added to the model

CHANGES FOR BSIMM9 (116 ACTIVITIES)

• SM2.5 Identify metrics and use them to drive resourcing became SM3.3
• SR2.6 Use secure coding standards became SR3.3
• SE3.5 Use orchestration for containers and virtualized environments added to the model
• SE3.6 Enhance application inventory with operations bill of materials added to the model
• SE3.7 Ensure cloud security basics added to the model

CHANGES FOR BSIMM8 (113 ACTIVITIES)
• T2.7 Identify new satellite through training became T3.6
• AA2.3 Make SSG available as AA resource or mentor became AA3.3

CHANGES FOR BSIMM7 (113 ACTIVITIES)

• AM1.1 Maintain and use a top N possible attacks list became AM2.5
• AM1.4 Collect and publish attack stories became AM2.6
• AM1.6 Build an internal forum to discuss attacks became AM2.7
• CR1.1 Use a top N bugs list became CR2.7
• CR2.2 Enforce coding standards became CR3.5
• SE3.4 Use application containers to support security goals added to model

CHANGES FOR BSIMM6 (112 ACTIVITIES)

• SM1.6 Require security sign-off prior to software release became SM2.6
• SR1.4 Use secure coding standards became SR2.6
• ST3.1 Include security tests in QA automation became ST2.5
• ST3.2 Perform fuzz testing customized to application APIs became ST2.6

CHANGES FOR BSIMM-V (112 ACTIVITIES)

• SFD2.3 Find and publish mature design patterns from the organization became SFD3.3
• SR2.1 Communicate standards to vendors became SR3.2
• CR3.1 Use automated tools with tailored rules became CR2.6
• ST2.3 Begin to build and apply adversarial security tests (abuse cases) became ST3.5
• CMVM3.4 Operate a bug bounty program added to model

CHANGES FOR BSIMM4 (111 ACTIVITIES)

• T2.1 Deliver role-specific advanced curriculum became T1.5
• T2.2 Company history in training became T1.6
• T2.4 Deliver on-demand individual training became T1.7
• T1.2 Include security resources in onboarding became T2.6
• T1.4 Identify new satellite members through training became T2.7
• T1.3 Establish SSG office hours became T3.5
• AM2.4 Build an internal forum to discuss attacks became AM1.6
• CR2.3 Make code review mandatory for all projects became CR1.5
• CR2.4 Use centralized reporting to close the knowledge loop became CR1.6
• ST1.2 Share security results with QA became ST2.4
• SE2.3 Use application behavior monitoring and diagnostics became SE3.3
• CR3.4 Automate malicious code detection added to model
• CMVM3.3 Simulate software crises added to model

CHANGES FOR BSIMM3 (109 ACTIVITIES)

• SM1.5 Identify metrics and use them to drive resourcing became SM2.5
• SM2.4 Require security sign-off became SM1.6
• AM2.3 Gather and use attack intelligence became AM1.5
• ST2.2 Drive tests with security requirements and security features became ST1.3
• PT2.1 Use pen testing tools internally became PT1.3

CHANGES FOR BSIMM2 (109 ACTIVITIES)

• T2.3 Require an annual refresher became T3.4
• CR2.1 Use automated tools became CR1.4
• SE2.1 Use code protection became SE3.2
• SE3.1 Use code signing became SE2.4
• CR1.3 removed from the model

CHANGES FOR BSIMM1 (110 ACTIVITIES) • Added 110 activities

TABLE 6. ACTIVITY CHANGES OVER TIME. This table allows for historical review of how BSIMM activities have been added, moved, and deleted since
inception.

69 BSIMM FOUNDATIONS REPORT – VERSION 13

D. DATA: BSIMM13

Every organization wants to do software security more
effectively and efficiently. You can use this information
to understand what the BSIMM community is doing
today and how those efforts have evolved over time,
then plan your own SSI changes.

The BSIMM data yields very interesting analytical results, as shown
throughout this document. Figure 17 shows the highest-resolution
observation data that is published. Organizations can use this
information to note how often we observe each activity across all 130
participants to help plan their next areas of focus. Activities that are
broadly popular will likely benefit your organization as well.

In Figure 17, we also identified the most common activity in each
practice (highlighted in orange). To provide some perspective on what
“most common” means, although T1.1 is the most common activity
in the Training practice with 71 observations, Table 7 shows that it
isn’t in the top 20 activities across all the practices.

To provide another view into this data, we created a spider chart
by noting the percentage of activities observed for each practice
per BSIMM participant (normalized scale), then averaging these
values over the group of 130 firms to produce 12 numbers (one for
each practice). The resulting spider chart (Figure 15) plots these
values on spokes corresponding to the 12 BSIMM practices. Note
that performing a larger number of activities is often a sign of SSI
maturity. Other interesting analyses are possible, of course, such as
those at www.ieeexplore.ieee.org/document/9732894.

The range of observed scores in the current data pool is 12 for the
lower score and 100 for the higher score, indicating a wide range of
SSI maturity levels in the BSIMM13 data.

AGE-BASED PROGRAM CHANGES
Figure 16 shows the distribution of scores among the population
of 130 participating firms. To create this graph, we divided the
scores into six bins that are then further divided by the assessment
iteration (round 1, round 2, and round 3+). As you can see, the scores
represent a slightly skewed bell curve. We also plotted the average
age of the firms’ SSIs in each bin as a horizontal line. In general, firms
where more BSIMM activities were observed have older SSIs and are
more likely to have performed multiple BSIMM measurements.

FIGURE 15. ALLFIRMS SPIDER CHART. This diagram shows the average
percentage of normalized observations collectively reached in each practice
by the 130 BSIMM13 firms. Across these firms, the normalized observations
are higher in the Compliance & Policy, Standards & Requirements, and
Penetration Testing practices compared to Training, Attack Models, and
Security Testing.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

AllFirms (130)

FIGURE 16. BSIMM SCORE DISTRIBUTION. Assessment scores most
frequently fall into the 41 to 50 range in BSIMM13, versus 31 to 40 in
BSIMM12 (not shown), with an average SSG age of 5.0 years. In general, firms
that mature and continue to use the BSIMM as a measurement tool over time
(e.g., round 2, round 3+), tend to have higher scores. Refer to Appendix F for
more details on how SSIs evolve over multiple measurements.

0

5

10

15

20

25

30

35

61-12551-6041-5031-4021-300-20

Assessment Iteration 1 Assessment Iteration 2
Assessment Iteration 3+ Average Age

http://www.ieeexplore.ieee.org/document/9732894

70 BSIMM FOUNDATIONS REPORT – VERSION 13

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM13

FIRMS
(OUT OF 130)

BSIMM13
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

BSIMM13
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

BSIMM13
FIRMS

(PERCENTAGE)
ACTIVITY

BSIMM13
FIRMS

(OUT OF 130)

BSIMM13
FIRMS

(PERCENTAGE)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 98 75.4% [AM1.2] 80 61.5% [AA1.1] 113 86.9% [PT1.1] 114 87.7%

[SM1.3] 82 63.1% [AM1.3] 42 32.3% [AA1.2] 53 40.8% [PT1.2] 102 78.5%

[SM1.4] 117 90.0% [AM1.5] 76 58.5% [AA1.4] 69 53.1% [PT1.3] 88 67.7%

[SM2.1] 73 56.2% [AM2.1] 16 12.3% [AA2.1] 31 23.9% [PT2.2] 38 29.2%

[SM2.2] 63 48.5% [AM2.2] 11 8.5% [AA2.2] 32 24.6% [PT2.3] 45 34.6%

[SM2.3] 69 53.1% [AM2.5] 16 12.3% [AA2.4] 38 29.2% [PT3.1] 26 20.0%

[SM2.6] 71 54.6% [AM2.6] 16 12.3% [AA3.1] 20 15.4% [PT3.2] 15 11.5%

[SM2.7] 64 49.2% [AM2.7] 14 10.8% [AA3.2] 4 3.1%

[SM3.1] 27 20.8% [AM3.1] 9 6.9% [AA3.3] 15 11.5%

[SM3.2] 18 13.9% [AM3.2] 5 3.9%

[SM3.3] 26 20.0% [AM3.3] 11 8.5%

[SM3.4] 5 3.9%

[SM3.5] 0 0.0%

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 101 77.7% [SFD1.1] 104 80.0% [CR1.2] 83 63.9% [SE1.1] 87 66.9%

[CP1.2] 115 88.5% [SFD1.2] 90 69.2% [CR1.4] 107 82.3% [SE1.2] 115 88.5%

[CP1.3] 98 75.4% [SFD2.1] 39 30.0% [CR1.5] 62 47.7% [SE1.3] 79 60.8%

[CP2.1] 58 44.6% [SFD2.2] 64 49.2% [CR1.7] 54 41.5% [SE2.2] 57 43.9%

[CP2.2] 59 45.4% [SFD3.1] 17 13.1% [CR2.6] 28 21.5% [SE2.4] 39 30.0%

[CP2.3] 73 56.2% [SFD3.2] 18 13.9% [CR2.7] 20 15.4% [SE2.5] 52 40.0%

[CP2.4] 62 47.7% [SFD3.3] 7 5.4% [CR2.8] 34 26.2% [SE2.7] 42 32.3%

[CP2.5] 82 63.1% [CR3.2] 14 10.8% [SE3.2] 19 14.6%

[CP3.1] 30 23.1% [CR3.3] 8 6.2% [SE3.3] 11 8.5%

[CP3.2] 28 21.5% [CR3.4] 2 1.5% [SE3.6] 18 13.9%

[CP3.3] 11 8.5% [CR3.5] 3 2.3% [SE3.8] 0 0.0%

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 71 54.6% [SR1.1] 96 73.9% [ST1.1] 108 83.1% [CMVM1.1] 114 87.7%

[T1.7] 58 44.6% [SR1.2] 101 77.7% [ST1.3] 97 74.6% [CMVM1.2] 100 76.9%

[T1.8] 53 40.8% [SR1.3] 103 79.2% [ST1.4] 56 43.1% [CMVM2.1] 95 73.1%

[T2.5] 38 29.2% [SR2.2] 80 61.5% [ST2.4] 25 19.2% [CMVM2.2] 98 75.4%

[T2.8] 28 21.5% [SR2.4] 92 70.8% [ST2.5] 31 23.9% [CMVM2.3] 62 47.7%

[T2.9] 33 25.4% [SR2.5] 63 48.5% [ST2.6] 21 16.2% [CMVM3.1] 11 8.5%

[T2.10] 28 21.5% [SR2.7] 53 40.8% [ST3.3] 12 9.2% [CMVM3.2] 19 14.6%

[T2.11] 27 20.8% [SR3.2] 19 14.6% [ST3.4] 4 3.1% [CMVM3.3] 18 13.9%

[T3.1] 9 6.9% [SR3.3] 17 13.1% [ST3.5] 4 3.1% [CMVM3.4] 26 20.0%

[T3.2] 16 12.3% [SR3.4] 19 14.6% [ST3.6] 3 2.3% [CMVM3.5] 13 10.0%

[T3.5] 22 16.9% [CMVM3.6] 3 2.3%

[T3.6] 7 5.4% [CMVM3.7] 20 15.4%

[CMVM3.8] 0 0.0%

FIGURE 17. BSIMM13 SCORECARD. This scorecard shows how often we observed each of the BSIMM13 activities in the data pool of 130 firms.

71 BSIMM FOUNDATIONS REPORT – VERSION 13

ACTIVITY CHANGES OVER TIME
The popular business book, The 7 Habits of Highly Effective People,
explores the theory that successful individuals share common
qualities in achieving their goals, and that these qualities can be
identified and applied by others. The same premise can also be
applied to SSIs. Table 7 lists the 20 most observed activities in the
BSIMM13 data pool. The data suggests that if your organization is
working on its own SSI, you should consider implementing these
activities. As a reminder of how practices and activity labeling works,
activity SM1.4 is from the Strategy & Metrics practice, and it was
observed in 90% of the 130 BSIMM13 participant organizations.

Instead of the top 20 activities overall, Table 8 shows the most
common activity in each BSIMM practice (e.g., SM1.4 refers to an
activity in the Strategy & Metrics practice). Although we can’t directly
conclude that these 12 activities are necessary for all SSIs, we can
say with confidence that they’re commonly found in initiatives whose
efforts span all 12 practices. This suggests that if an organization is
working on an initiative of its own, their efforts will likely include the
majority of these 12 activities over time.

In addition to looking at the most common activities, we can also
analyze the fastest-growing activity observation rates between
BSIMM12 and BSIMM13. In BSIMM12, we observed 25 activities that
were already very common, having more than 80 observations each.
Table 9 shows that even among these common activities, some
experienced even more above average growth.

TABLE 7. TOP 20 ACTIVITIES BY OBSERVATION PERCENTAGE. Shown here are the most observed activities in the BSIMM13 data pool of 130 firms. This
frequent observation means that each activity has broad applicability across a wide variety of SSIs.

BSIMM13 TOP 20 ACTIVITIES BY OBSERVATION PERCENTAGE

ACTIVITY PERCENTAGE DESCRIPTION
[SM1.4] 90.0% Implement security checkpoints and associated governance.

[SE1.2] 88.5% Ensure host and network security basics are in place.

[CP1.2] 88.5% Identify privacy obligations.

[CMVM1.1] 87.7% Create or interface with incident response.

[PT1.1] 87.7% Use external penetration testers to find problems.

[AA1.1] 86.9% Perform security feature review.

[ST1.1] 83.1% Perform edge/boundary value condition testing during QA.

[CR1.4] 82.3% Use automated code review tools.

[SFD1.1] 80.0% Integrate and deliver security features.

[SR1.3] 79.2% Translate compliance constraints to requirements.

[PT1.2] 78.5% Feed results to the defect management and mitigation system.

[SR1.2] 77.7% Create a security portal.

[CP1.1] 77.7% Unify regulatory pressures.

[CMVM1.2] 76.9% Identify software defects found in operations monitoring and feed them back to development.

[SM1.1] 75.4% Publish process and evolve as necessary.

[CP1.3] 75.4% Create policy.

[CMVM2.2] 75.4% Track software bugs found in operations through the fix process.

[ST1.3] 74.6% Drive tests with security requirements and security features.

[SR1.1] 73.8% Create security standards.

[CMVM2.1] 73.1% Have emergency response.

BSIMM13 TOP ACTIVITIES BY PRACTICE

ACTIVITY PERCENTAGE DESCRIPTION

[SM1.4] 90.0% Implement security checkpoints and
associated governance.

[CP1.2] 88.5% Identify privacy obligations.

[T1.1] 54.6% Conduct software security
awareness training.

[AM1.2] 61.5% Use a data classification scheme for
software inventory.

[SFD1.1] 80.0% Integrate and deliver security
features.

[SR1.3] 79.2% Translate compliance constraints to
requirements.

[AA1.1] 86.9% Perform security feature review.

[CR1.4] 82.3% Use automated code review tools.

[ST1.1] 83.1% Perform edge/boundary value
condition testing during QA.

[PT1.1] 87.7% Use external penetration testers to
find problems.

[SE1.2] 88.5% Ensure host and network security
basics are in place.

[CMVM1.1] 87.7% Create or interface with incident
response.

TABLE 8. MOST COMMON ACTIVITY PER PRACTICE. This table shows the
most observed activity in each of the 12 BSIMM practices for the entire data
pool of 130 participant firms.

72 BSIMM FOUNDATIONS REPORT – VERSION 13

Tables 7 and 9 can help you understand what most firms are already
doing and discover potential gaps in your program. Another way to
look at the growth of activities between BSIMM12 and BSIMM13
is to look for trends, such as a high growth in observation rates
among common controls. There were 29 activities in BSIMM12 with
observations in the range of 40 to 79. The observation rate for six of
these activities, shown in Table 10, grew at 20% or higher. In addition,
there were 24 activities with observations in the range 20 to 39, and
six of them grew at 25% or more (see Table 11).

If we analyze these fast-growing activities, we observe a few areas of
interest to consider in your SSI:

• Now that [CR1.4 Use automated code review tools] is observed
in more than 82% of all firms, SSGs are starting to enforce code
reviews for all projects [CR1.5]. In addition, firms are starting to
scale their security testing across their complete application
portfolio [PT2.3] and are expanding beyond doing DAST to include
security testing in QA automation [ST2.5]. This might highlight
that more firms are moving to the maturing phase of their
SSIs (see Appendix B) and are now working on the scalability,
efficiency, and effectiveness aspects of their programs.

• Firms have already invested heavily in fundamental activities to
manage their compliance obligations [CP1.1 Unify regulatory
pressure] and [SR1.3 Translate compliance constraints to
requirements]. both of which are found in Table 7. In addition,
firms are increasing their efforts to manage compliance risk
[CP2.2] and creating a repeatable way to document their
compliance story [CP3.1]. These are potentially additional
examples of what organizations do once they enter the maturing
phase of their SSIs.

• In response to multiple high-profile breaches in the last few years,
we observed significant growth in activities to address software
supply chain risk management (SSCRM) (see Trends and
Insights). Potentially, organizations are also responding to these
breaches by investing in attack intelligence [AM1.5] they can use
to improve their programs.

BSIMM13 HIGH-GROWTH ACTIVITIES (1)

ACTIVITY GROWTH DESCRIPTION
[SR1.2] 14.8% Create a security portal.

[ST1.3] 11.5% Drive tests with security requirements and
security features.

[CP1.3] 11.4% Create policy.

TABLE 9. VERY COMMON ACTIVITIES WITH ABOVE AVERAGE GROWTH.
This table shows that firms, including those just starting their SSIs, continue
to invest into fundamental activities.

BSIMM13 HIGH-GROWTH ACTIVITIES (2)

ACTIVITY GROWTH DESCRIPTION
[SE1.3] 33.9% Implement cloud security controls.

[CR1.5] 26.5% Make code review mandatory for all
projects.

[SR2.2] 25.0% Create a standards review process.

[AM1.5] 24.6% Gather and use attack intelligence.

[SR2.4] 24.3% Identify open source.

[CP2.2] 20.4% Require security sign-off for compliance-
related risk.

TABLE 10. COMMON ACTIVITIES WITH HIGH GROWTH IN OBSERVATION
RATES. This table shows an ongoing trend of investment in common
activities. If you are not performing or planning to perform these activities,
consider them during your next planning cycle.

BSIMM13 HIGH-GROWTH ACTIVITIES (3)

ACTIVITY GROWTH DESCRIPTION
[SR2.7] 51.4% Control open source risk.

[ST2.5] 47.6% Include security tests in QA automation.

[PT2.3] 32.4% Schedule periodic penetration tests for
application coverage.

[CMVM3.4] 30.0% Operate a bug bounty program.

[SE2.7] 27.3% Use orchestration for containers and
virtualized environments.

[CP3.1] 25.0% Document a software compliance story.

TABLE 11. ACTIVITIES WITH HIGH GROWTH IN OBSERVATION RATES. This
table shows potential new trends in the BSIMM13 data pool.

73 BSIMM FOUNDATIONS REPORT – VERSION 13

E. DATA ANALYSIS: VERTICALS

While every company is a software company these
days, there are differences in SSI implementation.
You can use this information on how vertical markets
approach software security to inform your own
strategy.

An important use of the BSIMM data is to help everyone see how
different groups of organizations approach the implementation
of software security activities. Do certain groups focus more on
governance than testing? Or perhaps architecture and secure-by-
design components versus operational maintenance? What about
training? Or vendor management? While it seems true that “every

company is becoming a software company,” different verticals still
have their own priorities. The BSIMM data helps us to observe and
analyze this.

An important use of the BSIMM data
helps everyone see how different
organizations approach implementing
software security activities.

Table 12 shows how the representation of different verticals has
grown and evolved over the history of the BSIMM. Financial, ISV,
and technology firms were early adopters of the BSIMM, and we’ve
recently seen increased participation by cloud firms.

TABLE 12. BSIMM VERTICALS OVER TIME. The BSIMM community has grown over the years as shown by growth in vertical representation. Remember that a
firm can appear in more than one vertical. Note also that FinTech became a separate vertical from Financial in BSIMM11.

BSIMM VERTICAL PARTCIPANTS OVER TIME

FINANCIAL FINTECH ISV TECH HEALTHCARE INTERNET
OF THINGS CLOUD INSURANCE

BSIMM13 44 15 38 33 11 19 35 15

BSIMM12 38 21 42 28 14 18 26 13

BSIMM11 42 21 46 27 14 17 30 14

BSIMM10 57 43 20 16 13 20 11

BSIMM9 50 42 22 19 16 17 10

BSIMM8 47 38 16 17 12 16 11

BSIMM7 42 30 14 15 12 15 10

BSIMM6 33 27 17 10 13

BSIMM-V 26 25 14

BSIMM4 19 19 13

BSIMM3 17 15 10

BSIMM2 12 7 7

BSIMM1 4 4 2

74 BSIMM FOUNDATIONS REPORT – VERSION 13

IOT, CLOUD, AND ISV VERTICALS
IoT, cloud, and ISV firms each create software solutions, although
these verticals usually deploy their solutions in different ways. Relative
to BSIMM activities, cloud and ISV firms share a similar observation
pattern, except for the Compliance & Policy and Architecture Analysis
practices, where the ISV vertical is ahead of the Cloud vertical (see
Figure 18). This might reflect the different relationships that ISVS and
cloud firms have with their respective customers and perhaps the level
of regulation and transparency required.

Using the vertical scorecards found later in this section (Figure 23),
we can perform further analysis on similarities and differences
between verticals. For example, we see that the observations
putting ISVS ahead of the Cloud vertical in the Architecture Analysis
practice are [AA1.2 Perform design review for high-risk applications]
and [AA2.1 Perform architecture analysis using a defined process],
where the observation rate for ISVS is almost 50% higher than the
observation rate for Cloud. This difference indicates that ISVS spend
significantly more effort on going beyond threat modeling [AA1.1] to
perform design reviews and architecture analysis.

IoT firms exhibit a similar pattern when compared to the weighted
average of the ISV and Cloud verticals, with a notably higher score
in Architecture Analysis and a lower score in Penetration Testing
(Figure 19). One potential explanation is that IoT manufacturers have
less control of the production environments where their products
are deployed, and their products are more likely to go for extended
periods without software updates, which might reduce the perceived
value of extended penetration testing and increase the perceived
value of robust security designs. Similarly, it could be the case that
IoT devices typically present an attack surface that’s very different
compared to a typical web application, and IoT devices usually aren’t
sitting in front of large databases of PII or other private information.

FINANCIAL, HEALTHCARE, AND
INSURANCE VERTICALS
Three verticals in the BSIMM operate in highly regulated industries:
Financial, Healthcare, and Insurance (see Figure 20). In our long
experience with the BSIMM, we’ve seen large financial firms reacting
to regulatory pressures by starting SSIs earlier than insurance and
healthcare firms. However, for the first time, the SSG average ages for
financial services and insurance firms are now the same, at 5.2 years,
compared to 4.5 years in healthcare firms. Despite the narrowing
of this age difference, financial firms still display higher maturity.
This likely reflects a longer history of software security activity in the
Financial vertical, coupled with an influx of younger financial firms
that have comparatively new but relatively mature SSGs.

Although organizations in the Healthcare vertical include some
mature outliers, the data for these three regulated verticals shows
it lags the others in most practices but is ahead in Architecture
Analysis. Compared to financial firms, we see a similar picture in
the Insurance vertical, which is ahead in Security Testing but close
or lagging in other practices. The biggest differences between
the Insurance and Financial verticals are in Compliance & Policy,
Security Features & Design, Penetration Testing, and Configuration
Management & Vulnerability Management, where the Financial
vertical leads Insurance.

FIGURE 19. COMPARING IOT AND THE WEIGHTED AVERAGE OF ISV
AND CLOUD. While the ISV and Cloud verticals are very similar, there are
significant variations between IoT and those two verticals. The differences,
on a percentage scale, in risk and deployment models, along with customer
expectations, can explain the distinctions in their SSIs.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 18. COMPARING CLOUD AND ISV VERTICALS. This diagram helps
explain the differences, on a percentage scale, between practices in the Cloud
and ISV verticals. Here, we see noticeable differences in the Compliance &
Policy and Architecture Analysis practices.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

Cloud (35) ISV (38)

IoT (19) ISV (38)/Cloud (35) Weighted Average

75 BSIMM FOUNDATIONS REPORT – VERSION 13

FINANCIAL AND TECHNOLOGY
VERTICALS
Financial and Technology are the two verticals with the highest
BSIMM scores. Figure 21 shows that while the average score across
both verticals is similar in most practices, there are significant
differences as well. Financial firms have a higher average score
in Compliance & Policy, likely due to more stringent regulatory
requirements. Technology firms have a higher average score in
Architecture Analysis and Security Testing.

To understand more about the differences in these two practices, we
analyzed the vertical scorecards found later in this section (Figure
23). In the Architecture Analysis practice, while financial firms have
a high observation rate for threat modeling [AA1.1 Perform security
feature review], the observation rates for design review [AA1.2
Perform design review for high-risk applications] and architecture
risk analysis [AA2.1 Perform architecture analysis using a defined
process] are almost three times higher in the Technology vertical
compared to the Financial one. In addition, the observation rates
for enabling engineering teams to be self-sufficient in performing
architecture analysis ([AA3.1 Have engineering teams lead AA
process] and [AA3.3 Make the SSG available as an AA resource or
mentor]) are more than six times higher among technology firms
compared to financial firms.

One explanation for this difference is the tighter relationship between
hardware and software in many technology products. When the
software must be closely mated to its hardware, then architecture
analysis and engineering-driven design reviews are much more
important to long-term success for products in the field. This trend
seems to hold for IoT firms, and perhaps even for healthcare firms
that are making IoT devices, which are doing more in the Architecture
Analysis practice as compared to the overall data pool.

In the Security Testing practice, we see significantly higher
observation rates for technology firms even when we ignore [ST2.6
Perform fuzz testing customized to application APIs], where we
expect technology firms to perform a lot more fuzzing compared to
financial ones. This includes fundamental activities such as [ST1.1
Perform edge/boundary value condition testing during QA] and
[ST1.3 Drive tests with security requirements and security features].
When it comes to automation of security testing ([ST1.4 Integrate
opaque-box security tools into the QA process], [ST2.5 Drive QA tests
with AST results], and [ST3.4 Leverage code coverage analysis]),
the observation rate for technology firms is almost double that
of financial firms. The difference is even more pronounced when
we look at activities [ST2.4 Drive QA tests with AST results] and
[ST3.5 Begin to build and apply adversarial security tests (abuse
cases)], which enable more in-depth testing. For these activities, the
observation rate for technology firms is five times higher that it is for
financial ones.

FIGURE 20. FINANCIAL VS. HEALTHCARE VS. INSURANCE. Even verticals
that are similarly highly regulated exhibit significant differences in their SSIs.
While they all have a focus on Compliance & Policy, there are significant
differences, on a percentage scale, in most other practices, indicating that
each vertical is responding to its regulatory obligations in its own way.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

Financial (44) Healthcare (11) Insurance (15)

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 21. FINANCIAL VS. TECHNOLOGY. Technology firms appear to
invest significantly more effort into in-depth design reviews, automation of
security testing, and enablement of engineering teams to be self-sufficient,
resulting in the differences, on a percentage scale, seen above. One potential
explanation is that many technology firms build long-life products that they
ship to customers and therefore perform more in-depth analysis before
release.

Financial (44) Technology (33)

76 BSIMM FOUNDATIONS REPORT – VERSION 13

TECHNOLOGY VS. NON-TECHNOLOGY
The Technology vertical stands out as the one with the least similarity
to the other verticals. As such, it’s informative to make a comparison
between technology firms and everyone else, as illustrated in Figure
22. The biggest differences where technology firms lead everyone
else are in Architecture Analysis and Security Testing, which could
be indicative of a comparatively higher level of engineering rigor.
The only practice where technology firms trail everyone else is
Compliance & Policy, which reflects that other verticals are more
closely regulated than technology firms.

FIGURE 22. TECHNOLOGY VS. NON-TECHNOLOGY. Shown here is a
comparison of the Technology vertical versus the rest of the data pool, shown
on a percentage scale. The average SSG age for technology firms is 5.9 years
vs. 4.7 for all other firms, which could be one of the reasons for their higher
maturity.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

Technology (33) Non-technology (97)

The activities in light orange appear to be uniformly applicable across
all verticals, while those in teal appear to be more vertical-specific.

• We excluded in our analysis the activities with low observation
rates (lower than 10 for all firms in the data pool) for bullets #2
and #3 above.

The following are observations from Figure 23:

• The five activities with the least variation in observation rate
between verticals, not surprisingly, are some of the most common
activities in BSIMM13. These are [SM1.4 Implement security
checkpoints and associated governance], [SR1.3 Translate
compliance constraints to requirements], [ST1.1 Perform edge/
boundary value condition testing during QA], [SE1.2 Ensure host
and network security basics are in place], and [CMVM1.1 Create
or interface with incident response]. This is another indicator that
these activities are applicable to all SSIs, independent of what
vertical the firm is in.

• Activity [AM3.3 Monitor automated asset creation] was introduced
in BSIMM10. It has one of the largest differences between
verticals, and its observation rate for the Financial vertical is
significantly above the overall average. This is an indication that
financial firms are early adopters of [AM3.3] and the leaders in
implementing this activity. In addition, the observation rate for
[CMVM3.5 Automate verification of operational infrastructure
security] (also introduced in BSIMM10) among financial firms is
also significantly above the average. This is another indicator that
financial firms are early adopters as well as potential leaders in
the shift everywhere approach.

• Another three activities with large differences in observation rates
between verticals are [ST2.6 Perform fuzz testing customized
to application APIs], [ST3.3 Drive tests with design review
results], and [SE3.2 Use code protection]. For these activities, the
observation rate for technology firms is significantly higher than
the average, an indication that some verticals potentially focus on
specific activities because of their unique technology stacks (e.g.,
very API driven) and because they publish their software across
trust boundaries (e.g., shipping products to customers).

• The Healthcare vertical (11 firms) has a significantly lower average
BSIMM score (37.7) versus the remaining 119 BSIMM13 firms
(45.0), so it is not surprising that the Healthcare vertical has the
most observation rates highlighted in orange compared to other
verticals. This gap is especially evident when we look at developer
enablement—the Training practice overall and [CR1.7 Assign code
review tool mentors] in particular. At the same time, Healthcare is
leading all verticals in unifying regulatory pressures [CP1.1].

• FinTech has significantly higher observation rates for [SR2.7
Control open source risk] and [CR2.6 Use custom rules with
automated code review tools] compared to other verticals.
It’s unclear whether there is a correlation between these two
activities; for example, are FinTech firms leveraging custom SAST
rules to enforce their open source policy and manage the risk?

VERTICAL SCORECARDS
Figure 23 shows the BSIMM scorecards for the eight verticals
compared side by side, allowing for discovery of differences and
similarities between verticals. This report includes some new
information for the vertical scorecards:

• For each activity per vertical, we are presenting the observation
rate as a percentage (e.g., 74% of firms in the Cloud vertical are
performing [SM1.1]).

• To show the biggest outliers within each vertical, we highlighted
activities where observation rates are either at least 1.75 standard
deviations above average (highlighted in blue) or at least 1.75
standard deviations below average (highlighted in dark orange).
Use these highlighted differences to identify apparently higher-
and lower-value activities unique to a vertical.

• We also highlighted five activities (see the activity column) with
the least differences between verticals (light orange color) and five
activities with the largest differences between verticals (teal color).

77 BSIMM FOUNDATIONS REPORT – VERSION 13

GOVERNANCE
ACTIVITY CLOUD (OF 35) FINANCIAL (OF 44) FINTECH (OF 15) HEALTHCARE (OF 11) INSURANCE (OF 15) IOT (OF 19) ISV (OF 38) TECH (OF 33)

STRATEGY & METRICS
[SM1.1] 74% 73% 67% 82% 87% 95% 79% 94%

[SM1.3] 69% 66% 60% 45% 67% 47% 71% 61%

[SM1.4] 86% 100% 87% 91% 93% 95% 84% 91%

[SM2.1] 66% 70% 80% 36% 73% 32% 50% 52%

[SM2.2] 46% 59% 47% 18% 33% 47% 50% 55%

[SM2.3] 63% 34% 60% 45% 47% 63% 76% 58%

[SM2.6] 49% 64% 47% 27% 47% 58% 55% 64%

[SM2.7] 46% 43% 53% 64% 53% 47% 50% 61%

[SM3.1] 23% 23% 33% 0% 7% 21% 26% 24%

[SM3.2] 9% 11% 13% 9% 13% 16% 16% 15%

[SM3.3] 17% 27% 20% 18% 27% 11% 18% 18%

[SM3.4] 0% 7% 7% 9% 13% 0% 3% 0%

[SM3.5] 0% 0% 0% 0% 0% 0% 0% 0%

COMPLIANCE & POLICY
[CP1.1] 66% 82% 87% 100% 73% 79% 76% 73%

[CP1.2] 86% 95% 100% 100% 100% 95% 82% 82%

[CP1.3] 66% 84% 73% 73% 73% 79% 74% 76%

[CP2.1] 43% 50% 73% 45% 27% 47% 45% 36%

[CP2.2] 29% 55% 27% 36% 47% 68% 42% 58%

[CP2.3] 46% 64% 60% 64% 47% 58% 58% 64%

[CP2.4] 46% 57% 40% 36% 60% 26% 53% 42%

[CP2.5] 66% 68% 67% 55% 47% 53% 71% 52%

[CP3.1] 11% 32% 40% 18% 40% 11% 13% 15%

[CP3.2] 11% 30% 7% 27% 20% 16% 18% 24%

[CP3.3] 17% 9% 13% 0% 0% 11% 16% 12%

TRAINING
[T1.1] 60% 55% 67% 18% 33% 74% 58% 61%

[T1.7] 51% 50% 40% 18% 47% 53% 45% 55%

[T1.8] 40% 55% 47% 27% 53% 21% 39% 33%

[T2.5] 34% 14% 40% 18% 33% 32% 45% 39%

[T2.8] 31% 9% 7% 9% 13% 42% 29% 39%

[T2.9] 17% 32% 7% 18% 27% 42% 16% 39%

[T2.10] 17% 27% 20% 9% 20% 26% 24% 24%

[T2.11] 17% 27% 7% 18% 27% 21% 16% 24%

[T3.1] 9% 7% 0% 0% 13% 5% 8% 15%

[T3.2] 17% 18% 20% 9% 13% 16% 11% 9%

[T3.5] 17% 23% 20% 0% 13% 11% 13% 21%

[T3.6] 9% 5% 7% 0% 0% 5% 5% 9%

78 BSIMM FOUNDATIONS REPORT – VERSION 13

INTELLIGENCE
ACTIVITY CLOUD (OF 35) FINANCIAL (OF 44) FINTECH (OF 15) HEALTHCARE (OF 11) INSURANCE (OF 15) IOT (OF 19) ISV (OF 38) TECH (OF 33)

ATTACK MODELS
[AM1.2] 43% 86% 80% 91% 87% 32% 42% 42%

[AM1.3] 17% 43% 33% 45% 67% 26% 18% 24%

[AM1.5] 46% 73% 67% 73% 67% 58% 39% 58%

[AM2.1] 9% 16% 20% 9% 27% 16% 5% 12%

[AM2.2] 6% 9% 13% 9% 7% 16% 5% 15%

[AM2.5] 11% 11% 13% 9% 20% 21% 13% 24%

[AM2.6] 17% 7% 13% 0% 0% 16% 16% 30%

[AM2.7] 14% 14% 7% 9% 13% 11% 11% 9%

[AM3.1] 9% 7% 0% 0% 0% 11% 11% 9%

[AM3.2] 3% 5% 0% 9% 7% 5% 0% 3%

[AM3.3] 6% 18% 7% 0% 7% 5% 5% 0%

SECURITY FEATURES & DESIGN
[SFD1.1] 77% 84% 93% 82% 87% 58% 76% 79%

[SFD1.2] 80% 64% 60% 64% 60% 84% 82% 79%

[SFD2.1] 31% 30% 47% 18% 7% 37% 32% 39%

[SFD2.2] 60% 39% 40% 36% 33% 74% 58% 67%

[SFD3.1] 3% 25% 7% 18% 13% 11% 3% 18%

[SFD3.2] 17% 14% 13% 9% 7% 11% 13% 12%

[SFD3.3] 3% 7% 0% 0% 0% 11% 3% 12%

STANDARDS & REQUIREMENTS
[SR1.1] 60% 82% 80% 73% 87% 79% 63% 73%

[SR1.2] 83% 75% 67% 64% 73% 84% 84% 88%

[SR1.3] 69% 84% 80% 82% 73% 84% 82% 79%

[SR2.2] 51% 75% 60% 55% 87% 58% 45% 61%

[SR2.4] 63% 77% 73% 73% 73% 79% 74% 79%

[SR2.5] 43% 55% 47% 45% 47% 42% 50% 52%

[SR2.7] 43% 43% 67% 27% 33% 26% 45% 45%

v 6% 14% 7% 27% 20% 21% 16% 15%

[SR3.3] 17% 7% 20% 0% 0% 21% 11% 27%

[SR3.4] 20% 18% 7% 0% 7% 26% 18% 15%

79 BSIMM FOUNDATIONS REPORT – VERSION 13

SSDL TOUCHPOINTS
ACTIVITY CLOUD (OF 35) FINANCIAL (OF 44) FINTECH (OF 15) HEALTHCARE (OF 11) INSURANCE (OF 15) IOT (OF 19) ISV (OF 38) TECH (OF 33)

ARCHITECTURE ANALYSIS
[AA1.1] 91% 89% 100% 73% 100% 84% 92% 85%

[AA1.2] 31% 30% 20% 45% 27% 74% 45% 70%

[AA1.4] 31% 82% 73% 64% 80% 21% 32% 27%

[AA2.1] 20% 16% 0% 36% 20% 47% 32% 52%

[AA2.2] 20% 14% 0% 36% 27% 53% 29% 58%

[AA2.4] 17% 25% 20% 45% 27% 47% 32% 39%

[AA3.1] 14% 5% 0% 18% 13% 42% 21% 45%

[AA3.2] 0% 5% 0% 9% 0% 5% 0% 6%

[AA3.3] 11% 7% 0% 9% 7% 21% 13% 24%

CODE REVIEW
[CR1.2] 66% 68% 53% 55% 60% 79% 63% 61%

[CR1.4] 77% 86% 93% 82% 93% 79% 82% 79%

[CR1.5] 40% 48% 47% 55% 40% 58% 47% 58%

[CR1.7] 43% 39% 53% 27% 53% 37% 47% 45%

[CR2.6] 29% 20% 40% 18% 13% 16% 21% 21%

[CR2.7] 17% 18% 13% 9% 27% 16% 5% 24%

[CR2.8] 20% 36% 27% 27% 20% 11% 21% 24%

[CR3.2] 9% 16% 13% 0% 7% 5% 5% 12%

[CR3.3] 9% 5% 13% 9% 7% 5% 3% 6%

[CR3.4] 0% 2% 0% 0% 0% 0% 0% 3%

[CR3.5] 3% 2% 0% 0% 0% 0% 3% 3%

SECURITY TESTING
[ST1.1] 89% 77% 87% 82% 80% 89% 92% 94%

[ST1.3] 77% 66% 73% 64% 87% 84% 89% 85%

[ST1.4] 37% 36% 60% 36% 47% 63% 50% 64%

[ST2.4] 23% 9% 27% 0% 7% 32% 24% 36%

[ST2.5] 31% 18% 27% 9% 20% 26% 37% 36%

[ST2.6] 20% 5% 7% 0% 0% 26% 29% 39%

[ST3.3] 11% 0% 0% 9% 7% 26% 13% 27%

[ST3.4] 6% 2% 0% 0% 7% 0% 3% 9%

[ST3.5] 6% 0% 0% 0% 0% 5% 5% 9%

[ST3.6] 6% 5% 7% 0% 7% 0% 3% 0%

80 BSIMM FOUNDATIONS REPORT – VERSION 13

DEPLOYMENT
ACTIVITY CLOUD (OF 35) FINANCIAL (OF 44) FINTECH (OF 15) HEALTHCARE (OF 11) INSURANCE (OF 15) IOT (OF 19) ISV (OF 38) TECH (OF 33)

PENETRATION TESTING
[PT1.1] 89% 86% 93% 91% 93% 74% 95% 88%

[PT1.2] 83% 75% 100% 64% 67% 58% 89% 76%

[PT1.3] 63% 75% 73% 64% 73% 58% 66% 61%

[PT2.2] 40% 23% 40% 0% 13% 42% 37% 39%

[PT2.3] 49% 45% 33% 18% 40% 21% 45% 21%

[PT3.1] 23% 18% 27% 9% 7% 32% 18% 33%

[PT3.2] 11% 11% 27% 0% 0% 16% 11% 21%

SOFTWARE ENVRIONMENT
[SE1.1] 60% 91% 80% 82% 93% 37% 53% 45%

[SE1.2] 91% 93% 93% 91% 93% 89% 82% 94%

[SE1.3] 71% 70% 60% 64% 80% 37% 66% 42%

[SE2.2] 40% 45% 40% 9% 33% 63% 45% 61%

[SE2.4] 37% 9% 20% 9% 7% 74% 42% 70%

[SE2.5] 46% 41% 47% 36% 47% 37% 42% 42%

[SE2.7] 49% 34% 33% 27% 40% 5% 39% 18%

[SE3.2] 6% 7% 7% 0% 7% 26% 16% 39%

[SE3.3] 6% 11% 20% 18% 13% 0% 8% 3%

[SE3.6] 14% 16% 13% 0% 0% 21% 16% 21%

[SE3.8] 0% 0% 0% 0% 0% 0% 0% 0%

CONFIGURATION MANAGEMENT & VULNERABILITY MANAGEMENT
[CMVM1.1] 83% 93% 93% 82% 93% 79% 87% 88%

[CMVM1.2] 86% 75% 93% 55% 73% 79% 84% 76%

[CMVM2.1] 74% 80% 80% 64% 80% 68% 79% 64%

[CMVM2.2] 80% 73% 80% 64% 60% 79% 84% 82%

[CMVM2.3] 43% 64% 47% 27% 40% 26% 37% 42%

[CMVM3.1] 9% 9% 13% 0% 0% 11% 8% 15%

[CMVM3.2] 11% 20% 13% 0% 0% 16% 13% 21%

[CMVM3.3] 17% 18% 13% 9% 20% 5% 8% 15%

[CMVM3.4] 26% 23% 33% 0% 20% 11% 18% 18%

[CMVM3.5] 11% 20% 13% 0% 7% 5% 3% 6%

[CMVM3.6] 3% 2% 0% 0% 0% 5% 3% 6%

[CMVM3.7] 23% 16% 0% 0% 0% 16% 21% 24%

[CMVM3.8] 0% 0% 0% 0% 0% 0% 0% 0%

FIGURE 23. VERTICAL COMPARISON SCORECARD. This table allows for easy comparisons of observation rates for the eight verticals tracked in BSIMM13. A
light orange color in the Activity column shows the five activities with the least differences in observation rates between verticals, whereas a teal color shows the
five activities with the most differences. Blue and dark orange in the remaining columns show observation rates that are significantly different from the average,
either above or below.

81 BSIMM FOUNDATIONS REPORT – VERSION 13

F. DATA ANALYSIS: LONGITUDINAL

Every SSI changes over time as technologies, attackers,
attacks, budgets, and everything else also changes.
You can use this information to see whether your SSI’s
trajectory is similar to that of other programs.

The BSIMM captures real-world data about how organizations
approach software security across their portfolio. Given the BSIMM’s
longevity, this data provides a unique snapshot of how the
community of SSIs has evolved over the past 14 years, as well as
how individual programs have changed from assessment to
assessment.

BUILDING A MODEL FOR SOFTWARE
SECURITY
In the late 1990s, software security began to flourish as a discipline
separate from computer and network security. Researchers began
to put more emphasis on studying the ways in which a developer
can contribute to or unintentionally undermine the security of an
application and started asking some specific questions: What kinds
of bugs and flaws lead to security problems? How can we identify
these problems systematically?

BSIMM ASSESSMENTS DONE OVER TIME

FIRMS 1ST
MEASUREMENTS

2ND
MEASUREMENTS

3RD
MEASUREMENTS

4TH
MEASUREMENTS

DATA POOL
MEASUREMENTS

BSIMM13 130 76 35 11 8 314

BSIMM12 128 76 31 14 7 341

BSIMM11 130 77 32 12 9 357

BSIMM10 122 72 29 13 8 339

BSIMM9 120 78 22 13 7 320

BSIMM8 109 73 20 11 5 256

BSIMM7 95 65 15 13 2 237

BSIMM6 78 52 16 8 2 202

BSIMM-V 67 46 17 4 0 161

BSIMM4 51 38 12 1 0 95

BSIMM3 42 31 11 0 0 81

BSIMM2 30 30 0 0 0 49

BSIMM1 9 9 0 0 0 9

TABLE 13. BSIMM ASSESSMENTS DONE OVER TIME. The chart shows how the BSIMM study has grown over the years, including how some firms have received
multiple measurements.

Within a few years, there was an emerging consensus that building
secure software required more than smart individuals toiling
away on guidance and training. Getting security right, especially
across a software portfolio, meant being directly involved in the
software development process, guiding it even as the process
evolves. Since then, practitioners have come to learn that process,
testing, and developer tools alone are insufficient: software security
encompasses business, social, and organizational aspects as well.

Table 13 shows how the BSIMM has grown over the years. (Recall
that our data freshness constraints, introduced with BSIMM-V and
later tightened, cause data from firms with aging measurements
to be removed.) BSIMM13 describes the work of 11,850 SSG and
satellite members (champions) working directly in software security,
impacting the security efforts of almost 410,000 developers.

Fifty-four of the current participating firms have been through at
least two assessments, allowing us to study how their initiatives
changed over time. Across North America, EMEA, and APAC, 35
firms are on their second assessment, 11 firms are on their third
assessment, five are on their fourth, and two are on their fifth
assessment. One North America firm has undertaken its sixth
assessment, continuing its use of the BSIMM as an SSI planning
and management tool. Figure 24 shows these firms by percentages
across three major BSIMM regions.

82 BSIMM FOUNDATIONS REPORT – VERSION 13

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 25. FIRMS ROUND 1 VS. FIRMS ROUND 2. This diagram illustrates
the normalized observation rate change, on a percentage scale, in 54 firms
between their first and second BSIMM assessments.

R1 (54) R2 (54)

CHANGES BETWEEN FIRST AND
SECOND ASSESSMENTS
Fifty-four of the 130 firms in BSIMM13 have been measured at least
twice. On average, the time between first and second measurements
for those 54 firms was 32.6 months. Although observations of
individual activities among the 12 practices come and go (as shown
in Figure 26), in general, remeasurement over time shows a clear
trend of increased maturity. The raw score went up in 48 of the 54
firms and remained the same in two. Across all 54 firms, the score
increased by an average of 12.5 (36.7%) from the first to second
measurement. Simply put, SSIs mature over time.

As shown in Figure 26, firms moving from their first assessment to
their second tend to invest in:

• Defining their program ([SM1.1 Publish process and evolve as
necessary], [SM2.1 Publish data about software security internally
and use it to drive change]), scaling the program using the
satellite ([SM2.3 Create or grow a satellite (security champions)]),
and evangelizing the secure SDLC as well.

• Defining and enforcing policy and standards ([CP1.3 Create
policy], [SR2.2 Create a standards review process])

• Managing vendors through boilerplate security SLAs ([CP2.4
Include software security SLAs in all vendor contracts], [SR2.5
Create SLA boilerplate])

• Identifying open source components ([SR2.4 Identify open source])

Figure 25 shows the average normalized observation rate per practice
for the 54 firms that have had a second assessment. Over the average
of about 32 months between the two assessments, we see clear
growth in every practice, especially in Strategy & Metrics, Compliance &
Policy, and Standards & Requirements. The practices with the highest
overall growth align with the individual activities identified in Figure 26.
The changes indicate that firms feel prepared for their first assessment
after focusing on foundational and technical activities such as training
and testing but then expand into governance as they mature their SSIs.

There are two factors causing the numerical changes seen in the
longitudinal scorecard (Figure 26, showing 54 BSIMM13 firms
moving from their first to second assessments). The first factor is
that more firms have now done their second assessment (adding
firms to this group), and the second is that we drop old data
(removing firms from this group). Grouped together, the two factors
can cause a significant amount of change in the group of firms that
have had a second assessment, even if the change isn’t directly
visible in the scorecard.

For example, [CP2.5 Ensure executive awareness of compliance and
privacy obligations] was newly observed in six firms, but it was either
no longer observed in five firms doing their second assessment or
decreased due to data aging out, giving a total change of 1 (as shown
in the scorecard). As another example, [CR1.2 Perform opportunistic
code review] was newly observed in five firms, but was no longer
observed or was part of aged-out data in another five firms, causing
the observation rate to stay the same at 32.

FIGURE 24. ONGOING USE OF THE BSIMM IN DRIVING ORGANIZATIONAL
MATURITY. Organizations are continuing to do remeasurements to show
that their efforts are achieving the desired results (e.g., about 55% of North
America participants are on their first assessment).

R1 R2 R3+

0%

20%

40%

60%

80%

100%

APACEMEANorth America

83 BSIMM FOUNDATIONS REPORT – VERSION 13

FIGURE 26. BSIMM13 REASSESSMENTS SCORECARD ROUND 1 Vs. ROUND 2. This chart shows how 54 SSIs changed between their first and second
assessments. Dark orange shows the top five activities with the most increase in observations by count. Light orange shows the next five activities with the most
increase in observations by count.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM

ROUND 1
(OF 54)

BSIMM
ROUND 2
(OF 54)

ACTIVITY
BSIMM

ROUND 1
(OF 54)

BSIMM
ROUND 2
(OF 54)

ACTIVITY
BSIMM

ROUND 1
(OF 54)

BSIMM
ROUND 2
(OF 54)

ACTIVITY
BSIMM

ROUND 1
(OF 54)

BSIMM
ROUND 2
(OF 54)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 29 46 [AM1.2] 33 41 [AA1.1] 50 48 [PT1.1] 47 50

[SM1.3] 30 38 [AM1.3] 16 21 [AA1.2] 17 24 [PT1.2] 38 40

[SM1.4] 46 49 [AM1.5] 24 31 [AA1.4] 24 30 [PT1.3] 32 42

[SM2.1] 18 33 [AM2.1] 5 7 [AA2.1] 11 21 [PT2.2] 10 13

[SM2.2] 22 28 [AM2.2] 3 6 [AA2.2] 8 17 [PT2.3] 11 18

[SM2.3] 20 42 [AM2.5] 8 6 [AA2.4] 14 16 [PT3.1] 5 7

[SM2.6] 20 29 [AM2.6] 6 7 [AA3.1] 4 11 [PT3.2] 4 5

[SM2.7] 26 36 [AM2.7] 6 8 [AA3.2] 1 1

[SM3.1] 11 16 [AM3.1] 2 2 [AA3.3] 4 6

[SM3.2] 1 6 [AM3.2] 1 0

[SM3.3] 6 17 [AM3.3] 1 3

[SM3.4] 0 2

[SM3.5] 0 0

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 38 44 [SFD1.1] 40 45 [CR1.2] 32 32 [SE1.1] 23 36

[CP1.2] 44 49 [SFD1.2] 34 40 [CR1.4] 34 48 [SE1.2] 47 51

[CP1.3] 25 43 [SFD2.1] 12 21 [CR1.5] 16 26 [SE1.3] 3 21

[CP2.1] 15 29 [SFD2.2] 19 25 [CR1.7] 11 24 [SE2.2] 25 26

[CP2.2] 19 21 [SFD3.1] 4 10 [CR2.6] 7 12 [SE2.4] 13 17

[CP2.3] 20 27 [SFD3.2] 5 10 [CR2.7] 9 12 [SE2.5] 7 12

[CP2.4] 17 31 [SFD3.3] 1 1 [CR2.8] 15 20 [SE2.7] 3 8

[CP2.5] 29 30 [CR3.2] 1 6 [SE3.2] 7 5

[CP3.1] 9 16 [CR3.3] 0 1 [SE3.3] 3 5

[CP3.2] 9 17 [CR3.4] 0 0 [SE3.6] 1 6

[CP3.3] 1 6 [CR3.5] 0 1 [SE3.8] 0 0

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 32 36 [SR1.1] 34 44 [ST1.1] 46 49 [CMVM1.1] 46 47

[T1.7] 18 31 [SR1.2] 34 45 [ST1.3] 43 39 [CMVM1.2] 45 39

[T1.8] 12 19 [SR1.3] 35 44 [ST1.4] 17 28 [CMVM2.1] 38 41

[T2.5] 11 19 [SR2.2] 18 34 [ST2.4] 5 11 [CMVM2.2] 37 40

[T2.8] 13 11 [SR2.4] 19 36 [ST2.5] 4 12 [CMVM2.3] 23 32

[T2.9] 9 19 [SR2.5] 14 30 [ST2.6] 11 10 [CMVM3.1] 1 2

[T2.10] 3 13 [SR2.7] 6 17 [ST3.3] 2 5 [CMVM3.2] 4 9

[T2.11] 2 15 [SR3.2] 8 11 [ST3.4] 1 2 [CMVM3.3] 3 6

[T3.1] 1 5 [SR3.3] 7 8 [ST3.5] 2 3 [CMVM3.4] 3 13

[T3.2] 5 8 [SR3.4] 13 11 [ST3.6] 0 1 [CMVM3.5] 1 0

[T3.5] 1 8 [CMVM3.6] 0 0

[T3.6] 2 3 [CMVM3.7] 0 4

[CMVM3.8] 0 0

84 BSIMM FOUNDATIONS REPORT – VERSION 13

CHANGES BETWEEN FIRST AND THIRD
ASSESSMENTS
Nineteen of the 130 firms in BSIMM13 have been measured at
least three times. On average, the time between first and third
measurements for those 19 firms was 56.9 months. Although
individual activities among the 12 practices come and go (as shown
on next page), in general, remeasurement over time shows a clear
trend of increased maturity. The raw score went up in 18 of the
19 firms and decreased in one firm. Across all 19 firms, the score
increased by an average of 20.1 (60.4%) from their first to their third
measurements. Again, SSIs mature over time.

Although individual activities in the
12 practices come and go, in general,
remeasurement over time shows a
clear trend of increased maturity.

As shown in Figure 28, firms that move from their first assessment
to their third over the course of about 56.9 months, in addition to
changes shown previously, tend to invest in:

• Enabling self-sufficient engineering teams by leveraging
investments in training ([T1.7 Deliver on-demand individual
training], [T1.8 Include security resources in onboarding], [T2.9
Deliver role-specific advanced curriculum]), and static analysis
tool mentors ([CR1.7])

• Securing cloud environments ([SE1.3])

• Identifying potential attackers ([AM1.3])

Interestingly, while Figure 27 shows growth in every practice, it
shows only a slight increase in the Security Testing and Configuration
Management & Vulnerability Management practices.

This could mean that most organizations do a variety of Security
Testing and Configuration Management & Vulnerability Management
activities earlier on in their journeys.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 27. FIRMS ROUND 1 VS. FIRMS ROUND 3 SPIDER CHART. This
diagram illustrates the normalized observation rate change, on a percentage
scale, in 19 firms between their first and third BSIMM assessments.

R1 (19) R3 (19)

85 BSIMM FOUNDATIONS REPORT – VERSION 13

FIGURE 28. BSIMM13 REASSESSMENTS SCORECARD ROUND 1 Vs. ROUND 3. This chart shows how 19 SSIs changed between their first and third
assessments. Dark orange shows the top five activities with the most increase in observations by count. Light orange shows the next five activities with the most
increase in observations by count.

GOVERNANCE INTELLIGENCE SSDL TOUCHPOINTS DEPLOYMENT

ACTIVITY
BSIMM

ROUND 1
(OF 19)

BSIMM
ROUND 3

(OF 19)
ACTIVITY

BSIMM
ROUND 1

(OF 19)

BSIMM
ROUND 3

(OF 19)
ACTIVITY

BSIMM
ROUND 1

(OF 19)

BSIMM
ROUND 3

(OF 19)
ACTIVITY

BSIMM
ROUND 1

(OF 19)

BSIMM
ROUND 3

(OF 19)

STRATEGY & METRICS ATTACK MODELS ARCHITECTURE ANALYSIS PENETRATION TESTING
[SM1.1] 7 19 [AM1.2] 12 17 [AA1.1] 16 19 [PT1.1] 17 18

[SM1.3] 9 15 [AM1.3] 4 14 [AA1.2] 4 9 [PT1.2] 10 17

[SM1.4] 17 18 [AM1.5] 8 11 [AA1.4] 9 14 [PT1.3] 9 13

[SM2.1] 6 15 [AM2.1] 3 8 [AA2.1] 2 7 [PT2.2] 3 7

[SM2.2] 6 11 [AM2.2] 1 4 [AA2.2] 0 5 [PT2.3] 6 5

[SM2.3] 8 13 [AM2.5] 4 5 [AA2.4] 3 8 [PT3.1] 2 3

[SM2.6] 6 12 [AM2.6] 1 2 [AA3.1] 1 3 [PT3.2] 1 3

[SM2.7] 6 15 [AM2.7] 2 3 [AA3.2] 0 0

[SM3.1] 5 7 [AM3.1] 0 1 [AA3.3] 2 2

[SM3.2] 0 6 [AM3.2] 0 1

[SM3.3] 3 5 [AM3.3] 0 1

[SM3.4] 0 1

[SM3.5] 0 0

COMPLIANCE & POLICY SECURITY FEATURES
& DESIGN CODE REVIEW SOFTWARE

ENVIRONMENT
[CP1.1] 12 19 [SFD1.1] 17 17 [CR1.2] 12 18 [SE1.1] 7 14

[CP1.2] 15 18 [SFD1.2] 13 15 [CR1.4] 13 18 [SE1.2] 16 18

[CP1.3] 9 15 [SFD2.1] 4 6 [CR1.5] 5 9 [SE1.3] 0 8

[CP2.1] 6 12 [SFD2.2] 6 12 [CR1.7] 3 13 [SE2.2] 5 5

[CP2.2] 5 8 [SFD3.1] 1 3 [CR2.6] 1 5 [SE2.4] 4 4

[CP2.3] 7 14 [SFD3.2] 3 8 [CR2.7] 5 5 [SE2.5] 1 7

[CP2.4] 5 11 [SFD3.3] 0 0 [CR2.8] 7 8 [SE2.7] 0 4

[CP2.5] 9 13 [CR3.2] 0 2 [SE3.2] 2 2

[CP3.1] 5 8 [CR3.3] 0 2 [SE3.3] 2 1

[CP3.2] 6 3 [CR3.4] 0 0 [SE3.6] 0 1

[CP3.3] 1 2 [CR3.5] 0 0 [SE3.8] 0 0

TRAINING STANDARDS &
REQUIREMENTS SECURITY TESTING CONFIG. MGMT.

& VULN. MGMT.
[T1.1] 10 14 [SR1.1] 13 17 [ST1.1] 17 16 [CMVM1.1] 17 18

[T1.7] 7 15 [SR1.2] 14 18 [ST1.3] 17 18 [CMVM1.2] 19 17

[T1.8] 3 12 [SR1.3] 13 18 [ST1.4] 7 12 [CMVM2.1] 16 17

[T2.5] 5 9 [SR2.2] 8 15 [ST2.4] 1 2 [CMVM2.2] 12 15

[T2.8] 3 6 [SR2.4] 5 14 [ST2.5] 0 3 [CMVM2.3] 9 13

[T2.9] 1 9 [SR2.5] 4 9 [ST2.6] 4 3 [CMVM3.1] 0 0

[T2.10] 0 3 [SR2.7] 3 8 [ST3.3] 1 2 [CMVM3.2] 1 1

[T2.11] 0 5 [SR3.2] 5 5 [ST3.4] 0 1 [CMVM3.3] 1 4

[T3.1] 0 2 [SR3.3] 3 4 [ST3.5] 2 1 [CMVM3.4] 1 6

[T3.2] 0 3 [SR3.4] 8 6 [ST3.6] 0 0 [CMVM3.5] 0 1

[T3.5] 0 4 [CMVM3.6] 0 0

[T3.6] 1 1 [CMVM3.7] 0 0

[CMVM3.8] 0 0

86 BSIMM FOUNDATIONS REPORT – VERSION 13

FIGURE 30. PERCENTAGE OF FIRMS THAT HAVE A SATELLITE, ORGANIZED
IN THREE BUCKETS BY BSIMM SCORE. Presence of a satellite and average
score (scale on the right) appear to be correlated, but we don’t have enough
data to say which is the cause and which is the effect.

Percentage of Firms with a Satellite (out of 76) Average Score

0

20%

0%

40%

60%

80%

100%

20

0

40

60

80

100

Top 20%Middle 60%Bottom 20%

FIGURE 29. AVERAGE RATIO OF SSG AND SATELLITE SIZE TO DEVELOPERS
FOR THREE SCORE BUCKETS. There is a strong correlation between security
champions’ support and overall BSIMM score (scale on the right). Note: For
the group that consists of the middle 60% of firms, we left out a single outlier
with a large SSG size that would have increased the ratio of SSG to developers
from 2.8% to 3.4% for the entire group.

SSG to Developers Satellite to Developers Average Score

0%

1%

2%

3%

4%

5%

6%

7%

8%

Top 20%Middle 60%Bottom 20%

20

10

0

30

40

50

60

70

80

Top 20%Middle 60%Bottom 20%

G. DATA ANALYSIS: SATELLITE
(SECURITY CHAMPIONS)
A security champions program is an organized effort to deputize
members of the development community into being software
security leaders for their geographies, application teams, or
technology groups. Once they are inducted into the program, the
SSI provides the champions with training, support, and the access
needed to answer security questions.

A security champions program allows an SSI and SSG
to scale their reach throughout the organization and
harmonize everyone’s approach to software security.
You can use this information to help justify your own
outreach program.

A security champions program is an effective way to address the
people and culture portions of the people, process, technology, and
culture view of an SSI’s scope. Firms typically rely on their security
champions to lead the ground-level security push among developers,
architects, QA, operations, and other stakeholders such as cloud
and site reliability. A strong security champions program enables an
SSI to scale people-driven activities, tune automated activities, and
prioritize remediation tracking activities within an organization. In
Figure 29, the green bars show that firms can achieve higher scores
even with a lower ratio of SSG to developers (e.g., the bottom 20%
have an SSG-to-developer ratio of 2.8%). One way these firms are
able to scale is by increasing the ratio of champions to developers,
as shown by the blue bars (e.g., the bottom 20% have a satellite-to-
developer ratio of 1.4%).

While the presence of a champions program doesn’t guarantee a high
number of activity observations, there is a correlation that appears
when grouping BSIMM firms by scores. More than 80% of firms in
the highest scoring group have a champions program as compared
to 20% in the lowest scoring group. Figure 30 shows the score
increases from an average of 22.1 activities in the lowest scoring
group (shown on the black line), up to an average of 70.5 activities in
the high scoring group (shown here as the top 20%).

87 BSIMM FOUNDATIONS REPORT – VERSION 13

When separating firms into groups with and without a satellite, the
activity observation rate increases in every practice (see Figure
31). While the biggest differences between the two spiders are in
Strategy & Metrics and Training, the firms with a satellite also spend
consistently more effort on defect discovery in the Architecture
Analysis, Code Review, Security Testing, and Penetrating Testing
practices.

Figure 32 shows that as SSIs get older, they have higher average
scores and are more likely to have a satellite (champions team).
So is the presence of a satellite the reason for higher score or the
consequence of older SSIs? One way to answer this question is to
look at the average ratio of SSG size to number of developers, shown
in Figure 29, which might indicate that there is a correlation between
SSI reach and the size of the security champions team.

More than 80% of f irms in the highest
scoring group have a champions
program, compared to 20% in the
lowest scoring group.

Seventy-six percent of the 54 BSIMM13 firms that have been
assessed more than once have a satellite, while 54% of the firms on
their first assessment do not. Many firms that are new to software
security take some time to identify and develop a satellite. This data
suggests that as an SSI matures, its activities become distributed
and institutionalized into the organizational structure, perhaps even
into engineering automation as well, requiring an expanded satellite
to provide expertise and be the local voice of the SSG.

Configuration Management &

Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

FIGURE 31. COMPARING FIRMS WITH AND WITHOUT A SATELLITE. The
presence of a satellite (champions program) seems to correlate strongly with
an increase in program maturity as evidenced by increased scores by practice
on a percentage scale.

Satellite (76) No Satellite (54)

FIGURE 32. BSIMM SCORE DISTRIBUTION RELATIVE TO SATELLITE
SIZE AND SSG AGE. Older SSIs (black line) not only tend to have a higher
BSIMM score (buckets 0-20, 21-30, etc.), they are also more likely to have a
champions program (green line).

Satellite Average AgeNo Satellite Percentage with a Satellite

0

5

10

15

20

25

30

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

61-12551-6041-5031-4021-300-20

88 BSIMM FOUNDATIONS REPORT – VERSION 13

H. DATA ANALYSIS: SSG
This section analyzes how SSIs evolve over time by analyzing SSG
age, SSG score, and other relevant data.

SSGs are the primary implementers of an SSI,
responsible for governance, enablement, productivity,
and continuous growth. You can use this information
to put your SSI and SSG on a growth path.

SSG CHARACTERISTICS
As the BSIMM community evolved, we added a greater number of
firms with newer SSIs and began to track new verticals that have less
software security experience (see Table 12 in Appendix E). Thus, we
expected a decrease in participant scores, which is easily seen in
Figure 33 for BSIMM6 through BSIMM8.

In BSIMM9, the average and the median scores started to increase.
We saw the largest increase in BSIMM13 when the average and
median scores increased by 4.1 and 3, respectively. One reason
for this change in average data pool score appears to be the mix
of firms using the BSIMM as part of their SSI journey. For example,
Figure 34 shows how the SSG age of firms entering the BSIMM
community changed over time. In BSIMM13, and in concert with the
increase in average scores seen for BSIMM13 in Figure 33, we saw a
significantly higher average and median SSG age of new firms versus
what was seen in previous years.

A second reason appears to be firms continuing to use the BSIMM
to guide their initiatives. Firms using the BSIMM as an ongoing
measurement tool are likely also making sufficient improvements to
justify the ongoing creation of SSI scorecards. See Appendix F for
more details on how SSIs evolve as seen through remeasurement
data.

A third reason appears to be the effect of firms aging out of the data
pool (see Figure 35).

We see a similar assessment score trend in mature verticals such as
that of the Financial vertical (see Figure 36).

Note that when creating BSIMM11, we recognized the need to realign
the Financial vertical. Over the past several years, financial and
FinTech firms differentiated significantly, and we became concerned
that having both in one vertical bucket could affect our analysis and
conclusions. Accordingly, we created a FinTech bucket and removed
FinTech firms from the financial bucket. This action created a new
FinTech vertical for analysis and reduced the size (but increased the
homogeneity) of the Financial vertical. To be clear, we did not carry
this change backward to previous BSIMM versions, meaning that
some BSIMM10 and older financial data is not directly comparable to
BSIMM11 and newer data.

Given their importance to overall SSI efforts, we also closely monitor
satellite trends. Many firms with no satellite continue to exist in the
community, which causes the median satellite size to be 9.5 (54 of
130 firms had no satellite at the time of their current assessment);
44% of the 27 firms added for BSIMM13 had no satellite at
assessment time, as seen in Figure 37).

BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7BSIMM6
0

10

20

30

40

50

FIGURE 33. AVERAGE BSIMM PARTICIPANT SCORE. Adding firms with less
experience decreased the average score from BSIMM6 through BSIMM8, even
as remeasurements have shown that individual firm maturity increases over
time.

FIGURE 34. AVERAGE AND MEDIAN SSG AGE FOR NEW FIRMS ENTERING
THE BSIMM DATA POOL. The median SSG age of firms entering BSIMM6
through BSIMM8 was declining and so did the average BSIMM score, while
outliers in BSIMM7 and BSIMM8 resulted in a high average SSG age. Starting
with BSIMM9, the median age of firms entering the BSIMM was higher again,
which tracks with the increase of average BSIMM scores.

0

1

2

3

4

5

6

BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7BSIMM6

Average Participant Score Median Participant Score

Average SSG Age Median SSG Age

89 BSIMM FOUNDATIONS REPORT – VERSION 13

FIGURE 36. AVERAGE FINANCIAL VERTICAL FIRM SCORES. The average
score across the Financial vertical followed the same pattern as the average
score for AllFirms (shown in Figure 33). Even in such a mature vertical, we
observe a rise in the average scores over time. We saw the largest increase in
average score for financial firms in BSIMM13.

0

10

20

30

40

50

BSIMM13BSIMM12BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7BSIMM6

FIGURE 37. STATISTICS FOR FIRMS WITH AND WITHOUT A SATELLITE. This
data appears to validate the notion that having more people, both centralized
and distributed into engineering teams, helps SSIs achieve higher scores. For
the 76 BSIMM13 firms with a satellite at last assessment time, the average
satellite size was 112 with a median of 40 (not shown). We present the average
and median SSG size to remove the impact of a few significant outliers.

Satellite (76 of 130) No Satellite (54 of 130)

0

10

20

30

40

50

Average ScoreAverage SSG AgeMedian SSG Size
0

5

10

15

20

25

BSIMM13BSIMM11BSIMM10BSIMM9BSIMM8BSIMM7BSIMM6

FIGURE 35. NUMBER OF FIRMS AGED OUT OF THE BSIMM DATA POOL.
A total of 138 firms have aged out since BSIMM-V. Fourteen firms that had
once aged out of the BSIMM data pool have subsequently rejoined with a new
assessment.

FIGURE 38. SSI SCORE DIVIDED BY AGE. By notionally organizing SSIs into
emerging, maturing, and enabling phases by age in years, we see a steady
growth in score as SSIs mature.

0%

10%

20%

30%

40%

50%

60%

70%

9.0 - 25

6.0 - 9.0

4.5 - 6

3.0 - 4.5 1.5 - 3.0

0 - 1.5

90 BSIMM FOUNDATIONS REPORT – VERSION 13

SSG CHANGES BASED ON AGE
This section analyzes how SSGs compare to each other based on
their age. We’ve mentioned a trend that older SSIs generally achieve
higher scores, and we show this trend in Figure 16 in Appendix D.
Here, we analyze the data in more detail to identify additional trends
related to SSG age.

For this analysis, we put the 130 BSIMM13 SSIs into six groups
based on SSG age. Figure 38 shows the trend discussed earlier: the
older the SSI, the higher its BSIMM score. While the journey through
emerging, maturing, and enabling phases is not a straight line (see
Appendix B), here we equate the emerging phase with the first two
bars from the left (0-1.5 and 1.5-3.0 years of age), maturing phase
with the next two bars, and enabling phase with the last two.

While Figure 38 provides a low-resolution view into how SSIs change
with SSG age, the following five figures increase the resolution and
compare the normalized spiders for SSIs organized by their age.
Figure 39 shows, on a percentage scale, how the SSI is changing
through its emerging phase. The green line shows what the
program looks like when SSIs are initially organizing themselves
and discovering what activities are already happening in the
organization. At this point in the journey, we typically see a relatively
high effort in Compliance & Policy, Standards & Requirements, and
Penetration Testing. Likely, these efforts are already in place due to
compliance obligations, an existing cybersecurity program and its
focus on standards, and quick wins in defect discovery by leveraging
penetration testing.

Over the next 18 months (blue line), SSIs build some capability
around documenting and socializing the SSDL, publishing and
promoting the process, and defect discovery for high-priority
applications. The differences between two spiders in Strategy &
Metrics, Compliance & Policy, Standards & Requirements, and
Architecture Analysis result from these efforts.

As SSIs move toward the maturing phase, they start focusing on
improving the efficiency, effectiveness, and scale of existing efforts,
see the “Maturing an SSI: Harmonizing Objectives” section of
Appendix B. This push typically involves getting more value out of
existing activities rather than doing more activities. Figure 40 shows
the difference in normalized spiders for organizations toward the
end of their emerging phase (green line) and the beginning of their
maturing phase (blue line).

The lack of any large differences between the spiders in Figure
40 shows that firms at this stage focus on tweaking the existing
program as they improve scale, efficiency, and effectiveness. The
changes are often an investment in quick wins (such as penetrating
testing) and automation (such as code reviews). As shown in the
diagram, when these SSIs look to improve scale and efficiency,
they appear to have less time for manual efforts in the Architecture
Analysis practice.

FIGURE 39. COMPARING EMERGING SSIs. As emerging SSIs move
from initial discovery steps (green area) toward defining and rolling out the
program (blue area), they invest in Strategy & Metrics, Compliance & Policy,
Standards & Requirements, and Architecture Analysis. This tracks with
recommendations in Appendix B on how to start an SSI, where almost 45% of
all recommended activities in Figure 10 are from these four practices.

Configuration Management &

Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 0 - 1.5 Years (28) SSGs with Ages 1.5 - 3.0 Years (28)

FIGURE 40. COMPARING LATE EMERGING TO EARLY MATURING SSIs.
As firms move from emerging to maturing, the average score increase is
relatively small. This aligns with our qualitative observations in Appendix B
that these firms often focus more on the scale, efficiency, and effectiveness of
existing activities in their SSIs versus working on implementing new activities.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 1.5 - 3.0 Years (28) SSGs with Ages 3.0 - 4.5 Years (15)

91 BSIMM FOUNDATIONS REPORT – VERSION 13

As SSIs move toward the end of their maturing phase, they start
investing again in improving policies, standards, requirements,
processes, metrics, and evangelism as shown by significant
differences in the spiders in Figure 41. The increase in observation
rates in the Strategy & Metrics, Compliance & Policy, and Standards &
Requirements practices demonstrate this trend.

We acknowledge that the number of firms in an enabling phase (i.e., in
the higher age ranges) is smaller compared to the other age ranges.
As such, some factors specific to verticals might significantly influence
the overall shape of the spiders. For example, 43% of firms with an
SSG age between six and nine years are in the Financial vertical as
compared to 34% in the entire BSIMM13 data pool. Similarly, 39% of
the firms with an SSG age above nine years are in the Technology
vertical versus 25% in the entire data pool. As we analyze the next two
figures, we keep these facts in mind. Refer to Appendix E for more
analysis of how the verticals compare to each other.

One potential explanation for the dip in Security Testing shown in Figure
42 is that the Financial vertical has one of the lowest observation rates
for this practice. For the spike in the Penetration Testing practice, almost
60% of all firms in the age bucket between six and nine years are either
in Cloud, ISV, or FinTech verticals—the three verticals with the highest
observation rates in the Penetration Testing practice. Outside of the
outliers mentioned above, SSIs gradually increase their effort in all other
practices as they start their enabling journey.

In Figure 43, we see some of the largest increases in observation rates,
specifically in Strategy & Metrics, Attack Models, Security Features
& Design, and Security Testing. The spike in Security Testing can be
explained by the high percentage of technology firms in this age bucket.
The average observation rate in the Security Testing practice is almost
2.5 times higher for technology firms compared to all other firms.

Figure 41. COMPARING MATURING SSIs. As firms move toward the end
of their maturing journey, SSGs start focusing again on implementing new
activities. Here, we see a trend toward a “shift left” approach where there
is increased investment in the Architecture Analysis and Security Testing
practices and decreased investment in the Penetrating Testing practice.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

50

60

SSGs with Ages 3.0 - 4.5 Years (15) SSGs with Ages 4.5 - 6.0 Years (27)

FIGURE 42. COMPARING LATE MATURING TO EARLY ENABLING SSIs. As
firms move from the maturing to the enabling stage, SSIs continue to invest
in Compliance & Policy. This stage is the first time that we see a significant
investment in the Training practice. Overall, this comparative growth aligns
with concepts such as putting “Sec” in DevOps as well as scaling outreach and
expertise, which are discussed in the “Enabling SSIs” section of Appendix B.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features

 & Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

60

50

80

70

SSGs with Ages 4.5 - 6.0 Years (27) SSGs with Ages 6.0 - 9.0 Years (14)

FIGURE 43. COMPARING ENABLING SSIs. As SSIs continue their enabling
phase, they invest significant effort in reusable and pre-baked security
controls (e.g., from the Security Features & Design practice) and learning
from the attacker’s perspective (e.g., from the Attack Models practice). In fact,
the increase in observation rate of activities in Security Features & Design is
the highest increase in observation rates among all practices across all age
buckets. This is also the first time we see significant increase in observation
rate in the Attack Models practice.

Configuration Management &
Vulnerability Management

Software Environment

Penetration Testing

Security Testing

Code Review

Architecture Analysis

Standards & Requirements

Security Features
& Design

Attack Models

Training

Compliance & Policy

Strategy & Metrics

10

20

30

40

60

50

80

70

SSGs with Ages 6.0-9.0 Years (14) SSGs with Ages over 9.0 Years (18)

92 BSIMM FOUNDATIONS REPORT – VERSION 13

	_Trends_and_Insights
	_Welcome__to
	_Case_Studies
	Part 1:
EXECUTIVE
SUMMARY
	Trends and Insights
	Why We Do Software Security
	Where We Do Software Security
	How We Do Software Security

	Welcome to BSIMM13
	BSIMM13 Data Highlights
	Call to Action
	Plan Your Journey
	Get a Handle on What You Have
	Pay Attention to the Latest Trends

	The BSIMM Skeleton
	Part 2:
Trends and insights
	Shift Everywhere
	Translating Risk Numbers into Decisions
	Continuous Defect Discovery
	Governance-as-Code

	Software Supply Chain Risk Management
	Software Bill of Materials
	Open Source Software
	Vendor Management
	Training for Outsourced Workers

	Security Integration into Developer Toolchains
	Dispersal into SDLC vs. Gates
	Automating Coding Standards

	Expanding Software Security Beyond Applications and Products
	Leveraging Operational Data for Continuous Improvement
	Integration of Knowledge-as-Code
	Security Champions

	Topics We’re Watching
	Part 3:
THE BSIMM COMMUNITY
	Participants
	Case Study: Lenovo
	Case Study: Leading North American financial institution
	Case Study: CRED
	Acknowledgements
	Part 4:
Quick guide
to SSI maturity
	Quick baseline for SSI leaders
	Is Your SSI Keeping Pace with Change in Your Software Portfolio?
	Are You Creating the DevSecOps Culture You Need?
	Are You Shifting Security Efforts Everywhere in the Engineering Lifecycle?
	How Does Your SSI Measure Up?

	Using a BSIMM scorecard to make progress
	Understand Your Organizational Mandate
	Build the Scorecard
	Make a Strategic Plan and Execute

	Roles in a software security initiative
	Part 5:
THE BSIMM FRAMEWORK
	Core knowledge
	Understanding the model
	Part 6:
THE BSIMM ACTIVITIES
	Activities in the BSIMM
	Governance
	Governance: Strategy & Metrics (SM)
	Governance: Compliance & Policy (CP)
	Governance: Training (T)

	Intelligence
	Intelligence: Attack Models (AM)
	Intelligence: Security Features & Design (SFD)
	Intelligence: Standards & Requirements (SR)

	SDLC Touchpoints
	SDLC Touchpoints: Architecture Analysis (AA)
	SDLC Touchpoints: Code Review (CR)
	SDLC Touchpoints: Security Testing (ST)

	Deployment
	Deployment: Penetration Testing (PT)
	Deployment: Software Environment (SE)
	Deployment: Configuration Management & Vulnerability Management (CMVM)

	Appendices
	A. Roles in a software security initiative

	Executive leadership
	Software security group leaders
	Software SecuRITy Group (SSG)
	Satellite (security champions)
	Key stakeholders
	B. How to build or upgrade an SSI

	Starting an SSI: Getting to an Emerging State
	Create a Software Security Group
	Document and Socialize the SSDL
	Inventory Applications in the SSG’s Purview
	Apply Infrastructure Security in Software Environments
	Deploy Defect Discovery for High-Priority Applications
	Publish and Promote the Process
	Progress to the Next Step in Your Journey

	Lessons from the Community
	Cultures
	A New Wave in Engineering Culture
	Understanding More About DevOps
	Convergence as a Goal

	Maturing an SSI: Harmonizing Objectives
	Establish Leadership and Objectives
	Expand Security Controls
	Engage Development
	Inventory and Select In-Scope Software
	Enforce Security Basics Everywhere
	Integrate Defect Discovery and Prevention
	Upgrade Incident Response
	Repeat and Improve

	Enabling SSIs
	Progress Isn’t a Straight Line
	Push for Agile-Friendly SSIs
	C. Detailed view of the BSIMM framework

	The BSIMM skeleton
	Creating BSIMM13 from BSIMM12
	Model changes over time
	D. Data: BSIMM13

	Age-based program changes
	Activity changes over time
	E. Data analysis: Verticals

	IoT, Cloud, and ISV verticals
	Financial, Healthcare, and Insurance verticals
	Financial and Technology verticals
	Technology vs. Non-technology
	Vertical scorecards
	F. Data Analysis: Longitudinal

	Building a model for software security
	Changes between First and Second Assessments
	Changes between First and Third Assessments
	G. Data analysis: Satellite (security champions)
	H. Data analysis: SSG

	SSG Characteristics
	SSG Changes Based on Age

