IP Subsystems

Addressing IP Integration & Software Development Challenges to Accelerate SoC Time-to-Market
This white paper will explore the issues facing SoC designers as they address SoC complexity and time-to-market challenges. It will discuss the use of third-party IP while noting that high-quality IP alone is not enough to accelerate time-to-market with today’s SoC complexity. The paper will also discuss issues around driver software development for the IP. Finally, it will review the five major development steps in any SoC design and how third-party IP providers should be expected to help accelerate each of these steps.
Dr. Johannes Stahl, Director of Prototyping Product Marketing, Synopsys, Inc.

The Rise of SIP Subsystems: What is the Value to Silicon Architects and SoC Designers
The semiconductor IP (SIP) market arose when SIP vendors created IP functions that mirrored those found in the discrete semiconductor market and made those functions available to SoC designers in the form of hard or soft SIP blocks. As the SoC and SIP markets evolved, it was a natural evolution that many discrete SIP functions be converged into larger blocks that mimic system-level functions (i.e. subsystems). This whitepaper discusses how the use IP subsystems to reduce the level of effort designers must expend to create highly complex SoC designs will represent the future of the SoC development in the semiconductor industry.
Rich Wawrzyniak, Sr. Market Analyst: ASIC & SoC, Semico Research Corp

High-End Audio Made Easy: The Software Story
Audio requirements are soaring. Whereas audio used to be done in a few spare cycles of the main CPU, decoding today’s Blu-ray Disc 24-bit, 192 kHz high-definition audio streams, or post-processing 9.1 channel Pro Logic IIz streams, requires significant performance. An obvious solution is to offload the processing to one or more dedicated audio digital signal processors (DSPs) such as the DesignWare® ARC® AS211SFX/AS221BD Audio Processors, but this complicates system design and introduces a number of hardware and software challenges. This white paper elaborates on these challenges and presents a number of architectural solutions. In addition to the offloading complexities, this paper covers the integration of audio processing software in larger multimedia and product software stacks, by describing how to integrate audio software into popular Linux- and Android-based systems.
Ruud Derwig, Synopsys, Inc., Senior Staff

Audio Subsystems for Efficient SoC Integration
Implementing advanced audio functionality in a system-on-chip (SoC) involves integrating a range of hardware and software components, including an audio processor, audio peripherals, software drivers, and audio processing software. In this white paper, we discuss the requirements for audio solutions for processing of high-definition (HD) multi-channel audio and detail the challenges involved in building such solutions.
Pieter van der Wolf, Synopsys Inc., Senior Staff

NewsArticlesBlogsWhite PapersWebinarsVideosNewslettersCustomer Successes