Overview
Advanced electronics continue to expand into all aspects of automotive design as demand for safety, performance, efficiency, security, reliability and infotainment continues to grow. Automotive companies face increasing business pressure not only for more advanced functions and performance, but also to control the rising cost of warranty issues, global supply-chain management, and shorter market windows. The electronic content in vehicle design incorporates semiconductor, FPGA, PCB, mechatronic, IP and embedded software design to create cost-effective and reliable systems. Integrating all aspects of this electronic content requires careful attention to component design and system interactions to minimize warranty costs, meet performance specifications, and enhance reliability under constantly changing environmental and operational conditions.

Key Benefits
Electronic components, embedded software, and mechatronic/power systems greatly enhance vehicle performance and flexibility, but can be a source of reliability and quality issues as new functions are added at an accelerated pace. This dramatic increase in electronic complexity makes design tools indispensable in the development of modern automotive systems. Synopsys has the tools, IP and methodologies necessary for today’s advanced automotive designs, from silicon to full systems and software.

- Design, test and verify electronic/mechatronic automotive systems for under-the-hood, infotainment and advanced driver assistance systems (ADAS) applications
- Reduce design cycle time at the IC, FPGA, mechatronic system, and embedded software level
 - Leverage virtual prototypes to integrate and test embedded software controls, using a full system representation before physical prototypes or hardware are available
 - Verify component and system interaction across multiple physical domains (electrical, mechanical, hydraulic, magnetic, thermal) using Robust Design/DFSS methodologies
 - Develop high-performance, technology-independent FPGAs for ADAS, infotainment and front-end safety applications
 - Design and validate mixed-signal, full-custom and standard cell ICs for any automotive application
 - Leverage silicon-proven design and verification IP such as USB, PCI Express®, LPDDR4/DDR, HDMI, Ethernet AVB, logic libraries, embedded memories, ARC® and EV vision processors, Sensor and Control IP Subsystem and Interface IP subsystems to reduce design schedule risk and faster time-to-market for infotainment and ADAS systems
- Drive higher overall product accuracy and reduce development time for the entire design chain with model-based exchange
- Design, simulate, verify, and visualize cutting-edge automotive lighting systems while reducing product development time
Early ECU Software Development, Integration and Test

Powertrain and hybrid controllers, chassis and safety systems, body electronics, ADAS infotainment devices and instrument clusters are part of the increasing electronic content in automobiles and translate into increasing software development, debug and test efforts. The challenges of creating robust code are felt throughout the automotive electronic supply chain, from semiconductor companies to tier 1 and OEM suppliers. Improved software development and test productivity in automotive not only results in faster time-to-market and contained development costs, but also in safer more reliable products.

Synopsys’ Virtualizer™ Development Kits (VDKs) help automotive system developers address their software development challenges. VDKs are software development kits containing virtual prototypes of automotive-specific microcontroller units (MCUs) and system-on-chips (SoCs), as well as debug and analysis tools and sample software that enable engineers to start software development and integration and test activities months before the hardware design is available.

Mechatronic and Power Systems – Robust Design Methodologies

Reliable vehicle operation depends on successful integration and verification of many multi-domain component interactions under varying operational and environmental conditions. Given the extraordinary complex nature of hardware and software controls in powertrain and H/EV design, engineers need Robust Design tools and methodologies to create systems that improve performance, reduce cost and maximize reliability.

The Synopsys Saber® Platform incorporates Robust Design/DFSS methodologies to enable design teams to model, analyze, and optimize system-level interactions for multiple automotive technologies including, electrical, mechanical, hydraulic and magnetic systems. Through the use of Saber, automotive designers can perform a greater number of tests and design variations compared to a hardware prototype, reducing design cycle time and maximizing safety and reliability.

Wire Harness Design and Simulation

The wire harness forms the backbone of the entire electrical system of automotive vehicles. The correct and reliable implementation of the wire harness represents one of the most expensive and technically challenging aspects of vehicle systems design.

Saber Harness provides proven design and verification capabilities in conjunction with the Saber Platform to create correct-by-design wire harnesses. Designers can create functional diagrams and electrical schematics, export component and wire data, import geometry information from MCAD tools, simulate electrical functions, create bundles with connector positions and generate data for manufacturing – all within a single design tool.

FPGA Design for Flexibility and Fast Algorithm Implementation

Over the past decade, the automotive industry has made great strides in ADAS that provide drivers with invaluable information about the road around them, enriching the overall driving experience. FPGAs are well-suited to meet these requirements by providing the computational power necessary for signal processing algorithms, scalability to meet future needs and provide an attractive range of cost targets for high volume applications.

Synopsys provides a vendor neutral environment for FPGA implementation, providing automotive companies with the flexibility to target their designs to the best FPGA architecture based on cost and performance requirements. Synopsys’ full-range of FPGA design and verification tools include Symphony Model™ Compiler to synthesize DSP algorithms into hardware, Synplify® Premier for logic
Synopsys offers a complete suite of digital and analog/mixed-signal IC tools with the Galaxy™ Design Platform and Galaxy Custom Designer™, including place and route tools tuned for reliability as well as specialized device types. Verification tools within the Synopsys Verification Continuum™ Platform are used by leading automotive companies to analyze and verify digital, analog and mixed-signal designs to ensure high-quality, robust designs that meet power and testability requirements.

In addition, Synopsys’ unique Certitude technology enables objective qualification of the design and verification environments leveraging efficient fault-injection techniques to ensure all specifications and safety requirements as per ISO 26262 standard are measurably met.

DesignWare IP for Faster Time-to-Market

The future of the automotive industry will bring autonomous/semi-autonomous driving with Internet connectivity for advance telematics, car-to-car communication, car-to-car infrastructure and new user interfaces. By leveraging high-quality, silicon-proven third-party semiconductor IP, designers can incorporate the necessary functionality into their automotive designs with extremely low risk and faster time-to-market.

Synopsys offers a broad range of DesignWare IP solutions for automotive applications including infotainment, telematics, ADAS and mainstream MCUs. DesignWare for PCI Express, SATA, Ethernet Quality-of-Service/Audio Video Bridging, USB, MIPI and DDR brings faster time-to-market for automotive SoC development. The EV Vision Processor implements the latest algorithms for high performance ADAS applications such as speed sign detection, in-cabin gesture recognition and driver drowsiness detection.

DesignWare Floating Point components support high-performance datapaths for radar-based ADAS functions using real-time floating point calculations for control and status. DesignWare Analog IP offers high-speed data converters for wireless interfaces and mobile TV/radio applications, sensor data converters for sensor applications, and audio codecs for high-quality audio applications. The DesignWare Sensor and Control IP Subsystem integrates hardware, software and DSP functions that enable designers to incorporate sensor fusion functionality into automotive applications.

Most of the advanced capabilities that are available in automobiles today are the result of systems that are controlled by embedded 32-bit microprocessors. Microprocessors are extensively used in a range of applications, from powertrain and safety systems to infotainment and communication systems, to increase functionality while making systems more flexible and easier to use.

Synopsys offers a full range of 32-bit microprocessor IP cores with solutions for the smallest, lowest power sensors to more sophisticated, high-performance drive train, infotainment and communications systems. For safety systems that need to be certified against the ISO 26262 standard, Synopsys offers the ARC EM with Safety Enhancement Package (SEP). This product solution combines processor IP with safety features, ASIL D Ready compiler tools and safety documentation to help ease the ISO 26262 certification process.

Offering clock speeds up to 1 GHz and power consumption as low as 4 µW/MHz, ARC processor cores are reliable, configurable and user customizable, enabling them to be tailored to the specific application requirements, which maximizes performance while minimizing power consumption and cost.

Solutions for Automotive Lighting Design

Automotive lighting is an important vehicle subsystem, both for its role in helping ensure safety as well as its role in defining a vehicle’s aesthetics and brand identity.

Synopsys’ LucidShape products provide a complete set of design, simulation, and analysis tools for the development of automotive lighting. Backed by cutting-edge, proprietary algorithms to calculate optical surfaces optimized for automotive applications, LucidShape empowers designers to develop, verify, visualize and deliver high-quality designs while reducing product development time. LucidShape delivers unique capabilities to support the latest advances in automotive lighting, including fast, accurate simulation methods, industry-leading geometry creation tools, many options that give designers the freedom to control their workflows to yield the best designs, and robust, custom scripting solutions for design task automation.
Synopsys Solutions for Automotive Design

Synopsys provides automotive OEMs and their suppliers with comprehensive tools and methodologies for the design, development, verification and test of automotive electronics, power systems and embedded software. Find out more about Synopsys’ proven automotive design tools and services by visiting us on the web at http://www.synopsys.com/automotive.

For more information about Synopsys products, support services or training, visit us on the web at www.synopsys.com, contact your local sales representative or call 650.584.5000.

<table>
<thead>
<tr>
<th>Automotive Design Technology Area</th>
<th>Synopsys Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault Solutions for ISO 26262</td>
<td>Certitude, Saber Fault, Virtualizer Development Kit (VDK)</td>
</tr>
<tr>
<td>Simulation Solutions</td>
<td>Verification Compiler, VCS, Saber, CustomSim, Virtualizer</td>
</tr>
<tr>
<td>Automotive IP</td>
<td>DesignWare IP portfolio for automotive applications: Ethernet Audio Video Bridging (AVB), LPDDR4, MIPI CSI-2 and DSI, HDMI, PCI Express, USB, Mobile Storage, Logic Libraries, Embedded Memories, Non-Volatile Memories (NVM), Data Converters, Synopsys ARC EM processors with Safety Enhancement Package (SEP), EV vision processors and the Sensor and Control IP Subsystem</td>
</tr>
<tr>
<td>Full-Chip Verification</td>
<td>ZeBu Server Emulator</td>
</tr>
<tr>
<td>Virtual Prototyping for Automotive MCU/SoC Architecture Design and Early SW Development</td>
<td>Platform Architect and Virtualizer</td>
</tr>
<tr>
<td>Early Automotive Systems SW Development and In-Vehicle E/E Architecture</td>
<td>Renesas RH850, Freescale MPC5xx, Freescale S32V234, Infineon AURIX, ARM® Cortex® -M and -R microcontroller VDKs</td>
</tr>
<tr>
<td>Documentation Solutions</td>
<td>Lynx Flows, Verification Planner Requirements Tracing via Dassault Systemes</td>
</tr>
<tr>
<td>FPGA-Based Prototyping</td>
<td>HAPS, ProtoCompiler, Synplify, Identify, Certify</td>
</tr>
<tr>
<td>Physical Modeling and Multi-Domain Simulation</td>
<td>Saber</td>
</tr>
<tr>
<td>Implementation for ASIC, FPGA, and Custom ICs</td>
<td>Galaxy Implementation, Synplify Synthesis Tools, Custom Designer</td>
</tr>
<tr>
<td>Automotive Lighting Design and Simulation</td>
<td>LucidShape products, LightTools</td>
</tr>
</tbody>
</table>

Synopsys has a broad portfolio of solutions for automotive design.