Design for Low Power

Barry Pangrle, Ph.D.
Director, R&D
Power Management

October 21, 2004
Power Management Approaches

Architectural
- Hardware vs. Software
- Hardware / Software Allocation
- Multi-threshold, Multi-voltage
- Clock, data gating
- Low-power circuits
- Retention latches
- Power aware memories

System Level
- Algorithm/Implementation
- Tradeoffs

Software
- Compilers
- Power aware OS
- Hibernation modes
- Memory Access

Hardware & IP
- Multi-threshold
- Multi-voltage
- Low-power circuits
- Retention latches
- Power aware memories

Process
- Multi-threshold, Multi-voltage, SOI, High-K, Body bias, Copper interconnect, SiGe substrates

© 2004 Synopsys, Inc. (2) Interoperability Forum CONFIDENTIAL
Galaxy Power Management

Power Management Throughout the Design Flow

Power Compiler
- Dynamic and leakage power optimization within DC & PC
- RTL power analysis

PrimePower
- Gate-level peak and average power analysis
- Vector-Free Capability

JupiterXT
- Design planning, power network analysis

Astro-Rail
- Voltage-drop and electromigration analysis
Power Dissipation In CMOS Designs

Dynamic Power \[P_{\text{dyn}} = a f^* C * V^2 \]

- Switching Power
 - Load Capacitance
 Charge/Discharge
- Internal Power
 - Short Circuit between Power and Ground during transition
 - Internal Capacitance within a Gate

Static Power
- Subthreshold Leakage
 \[I_{\text{sub}} = I_0 (e^{-V_{\text{th}}/S} [1-e^{-qV_{\text{ds}}/kT}]) \text{ (at } V_{\text{gs}} = 0) \]
- Gate Leakage
90 nm Leakage vs Delay

- **loff (nA/µm)**
- **Gate Delay (ps)**

- **loffn**
- **loffp**
90nm Low V_{th} & High V_{th} Cells
Multi-V_{th} Optimization Results
Case Study: 210K instances, 300MHz, initial leakage ~20uW

<table>
<thead>
<tr>
<th></th>
<th>Pre-route</th>
<th>Post-route</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-pass</td>
<td>Cell Swap</td>
</tr>
<tr>
<td>Physical Opt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Leakage\ (\mu W)$</td>
<td>10.8</td>
<td>11.1</td>
</tr>
<tr>
<td>$High-V_{th}\ (%)$</td>
<td>87.5%</td>
<td>89.7%</td>
</tr>
</tbody>
</table>

Meets timing – same slack as before Multi-V_{th} Opt
Checks DRC for better design QoR and closure
Multi-Voltage Design Styles

Multiple Supply Multi-Voltage Islands
- Voltage areas with fixed, single voltages

Dynamic Voltage Scaling
- Voltage areas with fixed, multiple voltages
- Software controlled modes

Adaptive Voltage Scaling
- Voltage areas with variable V_{dd}
- Software controlled modes

IEM Partnership
Multi-V_{DD} Design

- Isolation cells and level shifters for routing across voltage areas
 - Timing Constraints
 - Clock Frequency
 - Power
- Automatic insertion, optimization & power routing of special cells
 - Isolation cells
 - Level shifters
 - Retention registers
Power Gating

• Shut down non-active blocks
 ▪ Reduces leakage power
 ▪ Savings can be > 99%

• State Options:
 1) Throw away
 2) Scan out to memory
 3) Retain locally in “retention” registers

• States are restored or re-initialized when the blocks are reactivated

• Requires isolation cells at the boundaries
Leakage (Gated Ground or V_{DD})

“Header”

Virtual V_{DD}

“Footer”

Virtual V_{SS}
Leakage (Gated Ground or V_{DD})

1 Transistor / Cluster

Gate Transistor in Cell
Example Retention Register
Retention Register Insertion in Synthesis

- Same functionality, different styles
 - Additional restrictions on cell swapping
- Styles on HDL blocks
 - Set power gating style on named *always* blocks in Verilog or VHDL *processes*
- Control pins (save & restore)
 - Specially handled in synthesis
- Additional features supported
 - Scan Cells
 - Compile with gate level design
 - Incremental compile
 - Physopt
Power Compiler RTL Clock Gating
Synchronous-load-enable Implementation

```
always @(posedge CLK)
  if (EN)
    D_OUT = D_IN
```

Standard Non Clock Gating Implementation

Power Compiler Gated Clock Implementation
Challenge:
Concurrent Placement, Timing, Power & Clocking

- Power
 - Peak & Average
 - IR Drop
- Clocking
 - IR Drop
 - Max. Frequency
- Timing
 - Skew
 - IR Drop
- Placement
 - Skew
 - Path Delays & Slew
Synopsys Multi-Voltage Flow
Multi-Supply, Multi-Voltage Islands, Multi-Threshold Design

- Support throughout implementation & sign-off flow
- Multi-Voltage & Multi-Threshold synthesis in DC
- Power plan synthesis in JupiterXT
- Multi-Voltage placement & Multi-Threshold optimization in PC
- Multi-Voltage clock-tree synthesis & routing in Astro
- Sign-off with PrimeTime
AMBA DesignWare for AHB & APB Subsystems

- VDDRAM Domain
 - 16k Instruction RAM, 16k Data RAM
- VDDCPU Domain
 - ARM926EJ
 - 16k I-cache, 16k D-cache
- Dynamic Clock Generator
 - PLL1, PLL2
- Isolation Clamps
 - CPUCL (current), HPMCL (target)
- Level Shifters / Re-timing Interface
- Advanced High-Speed Bus
 - D-DW_AHB
 - I-DW_AHB
- Direct Memory Access
 - DW_DMA
- Interconnect Matrix
 - DW_ICM, x2
 - DW_ICM, x3
- Power, Clock, Reset, and Test
- Static Memory Controller
 - DW_Memcctl
- Dynamic Memory Controller
 - DW_Memcctl
- Digital Audio Controller
- SRAM, FLASH, CompactFlash x2 Interface
- SDRAM Interface
- IP Key:
 - ARM - light blue
 - National - dark blue
 - Artisan - yellow
 - Synopsys - purple

- Multi In-Circuit Emulator Sync
 - Advanced Power Controller Interface
 - Real-Time Clock DW_RTC
 - Interrupt Controller DW_IntrCont
 - Timers x2 DW_Timers
 - General Purpose I/O x48 DW_GPIO
 - Universal Async Receiver/Transmitter DW_UART_0
 - Universal Async Receiver/Transmitter DW_UART_1
 - Serial Synchronous Interface DW_SSI
Synopsys supplies:

- Low Power IEM Design Methodology
- Multi-voltage Galaxy Implementation Flow
- AMBA DesignWare IP
- Low Power Design Services